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Abstract

Separation logic is an extension of Hoare logic for reasoning about programs
that use pointers or references to potentially-shared data. The problem with
such programs, both in formal proofs and in informal understanding of them,
is to know not only what data they change but also to know what data they
leave unmodified. Separation logic has one simple general answer to this,
known as the frame rule; it intuitively says that all data that is disjoint from
the minimal footprint of the program will be unmodified. This thesis is a
collection of papers with the common theme of presenting new separation
logics and examples of using these logics to verify challenging programs.

The article Modular Verification of Linked Lists with Views via
Separation Logic reports on verification of a practical data structure with
separation logic. The challenges identified in this work has served as moti-
vation for later articles on verifying object-oriented programs and on giving
specifications where the meaning of disjointness is different from physical
heap disjointness in the implementation.

In Verifying Object-Oriented Programs with Higher-Order Sep-
aration Logic in Coq, we are concerned with giving modular specifications
to programs that use object-oriented inheritance and dynamic dispatch. Dy-
namic dispatch is as powerful as general functional programming, but the
typical usage patterns do not exploit that full generality. We designed a
logic to handle the fully general case and presented design patterns that
allow simple verification of simple programs.

Fictional Separation Logic allows multiple notions of disjointness
to coexist in a verification framework, thereby extending the utility of the
frame rule. Using techniques developed in the previous article, the exact
meaning of disjointness can be made abstract, hiding the implementation
from clients.

The article High-Level Separation Logic for Low-Level Code con-
tinues the theme of defining a powerful separation logic to give concise and
intuitive specifications to challenging programs. In this case, the logic tar-
gets x86 machine code. Challenges here include unstructured control flow
and the lack of basic facilities in the language such as memory allocation
and procedure calls.

Finally, the chapter Techniques for Model Construction in Sepa-
ration Logic surveys the mathematical techniques used to develop the pre-
vious separation logics and many other logics in the literature, concluding
that most separation-logic models fit into a common mathematical frame-
work, and that building new separation logics within this framework provides
practical benefits.
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Chapter 1

Introduction

This introduction aims to describe the contents of this thesis, starting from a
programmer’s informal understanding of program correctness and develop-
ing the terminology needed to appreciate the motivation for and contribution
of each of the articles and manuscripts that make up this thesis.

References and discussions of related work are left out here, but they
can be found in each of the subsequent chapters.

1.1 The problem: pointer aliasing

In virtually all modern programming languages, both informal understand-
ing and formal verification of programs are hampered by the complexities
of pointer aliasing. The following two-line Java program demonstrates the
problem.

x.f = 1;
y.f = 2;

After the second assignment, the field x.f might have either the value 1 or
2, depending on whether x 6= y or x = y respectively. We say that x and y
alias when x = y; i.e., the two variables point to the same memory location.

This thesis is concerned with program verification, where the goal would
typically be to determine the values of x.f and y.f after the program has
executed. The aliasing problem affects other types of program analysis as
well; for instance, an optimising compiler might want to know if the first
assignment can be discarded, because x = y, or if the assignments can be
reordered or run in parallel, because x 6= y.

To determine whether x and y alias, we could try to look higher up in
the program. Perhaps the last assignment to either x or y was

y = new MyClass();

In this case, we would know for sure that they do not alias. But if x and y
were both method arguments, we would need to examine all potential callers



of the current method, then perhaps all potential callers of those methods,
and so on. The problem is undecidable, and the optimising compiler would
be right to give up at this point and assume that both x = y and x 6= y are
possible; but in a program verification task, the intended specification may
only be provable if we can prove, e.g., x 6= y.

Examining all potential callers of a method introduces another problem
central to this thesis: lack of modularity. Modularity, in this context, means
the ability to specify and verify each part of a whole program in isolation
such that the specifications can be composed to imply the specification of
the whole program. For a public method in a shared library, modularity is
essential because all the potential callers have not even been written yet, so
examining them all is impossible rather than simply infeasible.

If correctness of the library method relies on the parameters not aliasing,
then we have to pass on this proof obligation to callers and require that
they do not call the method with arguments that might alias. This can be
as simple as a code comment:

/∗∗ Beware: behaviour is undefined if x = y ∗/ (1.1)

This is called a precondition of the method. More formally, a precondi-
tion is a logical predicate on the machine state that must be satisfied before
the method can be called. Analogously, a postcondition is a logical predi-
cate on the machine state that is guaranteed to be satisfied after the method
returns.

For more sophisticated data structures, code comments like the above
will not suffice. Even the simplest of data structures, such as linked lists,
will have internal pointers that cannot easily be named in a precondition
– their names are meaningless to callers because they will be the names of
private fields. The best we can do is perhaps to write

/∗∗
∗ Beware: behaviour is undefined if any pointer
∗ reachable from arg1 equals any pointer reachable
∗ from arg2, except for the shared data of type C
∗ they both refer to.
∗/

(1.2)

At this point, it should be clear that we need a better formal language
for these assertions. Separation logic offers exactly this.

1.2 A solution: separation logic

Separation logic is a family of program logics that make it easy to specify
when pointers do not alias and possible to specify when they do. Separation
logic was invented around 2001 by Reynolds, O’Hearn and others.
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Predicates on machine state in separation logic are called assertions,
and the most basic of them is the points-to assertion, written l 7→ v for a
location l and value v. It asserts that the memory cell at location l contains
value v. Separation logic also features the separating conjunction operator
on assertions: P ∗Q holds of a state that can be split into disjoint substates
such that P holds in one and Q in the other.

The requirement for disjointness in the definition of ∗ is what makes it
different from standard conjunction, ∧. Coming back to the above example
where an update to y.f might overwrite x.f, a separation-logic version of our
informal precondition (1.1) could require the existence of values v1 and v2
such that

x.f 7→ v1 ∗ y.f 7→ v2.

This would establish two things. First, both locations are accessible in mem-
ory and can be accessed without faulting – in Java, this means x 6= null and
y 6= null. Second, the locations cannot alias, since if x.f and y.f denoted the
same location l, then no matter how the state is split into disjoint substates,
only one of them can contain l.

Generalising the above, a separating conjunction of n points-to asser-
tions, l1 7→ v1 ∗ · · · ∗ ln 7→ vn, encodes n(n−1)

2 inequality constraints, so it
quickly becomes more compact than writing out all those constraints. But
more importantly, we can now encode the more challenging method specifi-
cation, (1.2), as a separation-logic assertion:

∃c. MyStruct(arg1, c) ∗MyStruct(arg2, c)

We see a few new elements here. First, a value c is existentially quantified
in the assertion. The language of assertions is a full-featured logic, so all
the standard logical operators (∃,∀,∨,∧,True,False,⇒,¬) are included and
behave as usual. Second, the predicate MyStruct denotes a parametrised
assertion that describes the shape of the data structure in question. A par-
ticular style of using such predicates has been popularised by Parkinson and
Bierman under the name abstract predicates. In this approach, only the
implementation of the MyStruct class can see the definition of the MyStruct
predicate. Public callers see it as an opaque token provided by the con-
structor and required by methods on the class, and this allows it to mention
private fields without exposing this information to clients.

Separation logic is a Hoare logic, where both whole methods and indi-
vidual commands are specified in terms of Hoare triples. A Hoare triple
{P} c {Q} asserts that command c has precondition P with postcondition
Q. Here P and Q are assertions, and we can say that (P,Q) is a specification
of c; a command may have multiple specifications.

The concise description of aliasing provided by separating conjunction
also leads to a solution for the frame problem in programming languages with
pointers. This is the problem of describing what part of the state has not
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changed after executing a command. Separation logic has a simple, universal
answer to this: all state that is disjoint from some valid precondition of c will
remain unmodified and disjoint after executing c. Formally, this is captured
by the frame rule:

{P} c {Q}
{P ∗R} c {Q ∗R} (1.3)

There is typically a syntactic side condition on this rule, requiring that no
named variables that may be modified in c are mentioned in R.

Reading from the top down, the frame rule intuitively says that if a
command c has been shown to have specification (P,Q), then it also has
specification (P ∗ R, Q ∗ R). Reading instead from the bottom up, it says
that if we want to verify that c has a specification with a repeated disjoint
component R, then we may disregard R for the duration of that verification.

1.3 Overview of this thesis

For all the benefits of separation logic, it still only solves a restricted set of
problems within a restricted set of languages. The articles in this thesis all
aim to extend the scope where separation logic applies.

A common theme to the articles is to define separation logics that allow
giving good specifications to programs that would otherwise be hard to
specify. In my opinion, a “good” specification should be concise and clear
so it is easy to see whether it expresses what is intended. It should also
be modular, which in this setting means that it is robust against changes
to both library and caller: changing the internals of the library must not
require reverification of callers, and new callers must be able to use the
library in its full generality without reverifying it to a new specification.

Chapters 2 and 4–5 investigate cases where disjointness of memory lo-
cations as discussed above is not the only useful notion of disjointness. The
application domain of the program may have its own natural notion of dis-
jointness, as in Chapter 2. If this notion satisfies certain properties, fictional
separation logic as introduced in Chapter 4 can make ∗ coincide with the
disjointness of the application domain. This leads to specifications that can
be highly robust against implementation changes. Multiple notions of dis-
jointness can coexist in a single program, and they can be made abstract to
callers.

Finding the best design pattern for specifying certain classes of programs,
as well as the right features in the logic to support these, is an open problem
that will always remain open. In Chapter 3, we investigate this problem for
the case of object-oriented programming. The dynamic dispatch facility of
object-oriented languages is as powerful as general functional programming,
but it is rarely used in its full generality. This observation led Parkinson
and Bierman to propose a separation logic featuring abstract predicate fam-
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ilies, which is a specification facility that mirrors how object-orientation is
most often used. Chapter 3 attempts to improve on this by decoupling the
separation logic from the design pattern. This enables a more general but
simpler separation logic, and it makes it easy to investigate variations on
the design pattern without re-doing the metatheory of the separation logic
for each variation.

The theme of extending the scope of separation logic and the frame
rule continues in Chapter 6, where we define a separation logic for x86
machine code. The typical formulation of the frame rule we saw in Equation
(1.3) is in terms of Hoare triples, but Hoare triples specify programs that
have exactly one entry point (where the precondition holds) and either a
single exit point or at least a common postcondition for all the exit points.
Machine code has none of that structure, and previous approaches have been
to either have no frame rule or define highly complex triples with multiple
pre- and postconditions, each associated with a location in the code. In
Chapter 6, we do just the opposite: break down the triple into simpler
building blocks that can be assembled to yield both the standard triple
for structured code fragments, the highly complex triples proposed in other
work, and also completely new triple-like formulas. The frame rule holds
by construction for any triple-like formula. Like in Chapter 3, the aim is to
provide a general and powerful logic that allows encoding of multiple design
patterns.

Working to solve all the problems mentioned above produces another
problem in itself: there is a tendency for separation logic metatheory to be
recreated from scratch with slight modifications in every article rather than
being reused in a formal sense. Chapter 7 attempts to survey and point out
the techniques that are common to almost every separation-logic article.
Hopefully, this will help future research to focus on the novel ingredients in
the proposed logic rather than the standard ones. There is no indication at
this point that separation-logic research is converging on a single logic that
is both general and practical, but I hope that we can get closer to that goal
by reusing techniques rather than reinventing them.

Notation and terminology is unfortunately not consistent across the
chapters of this thesis since they are independent papers. In particular,
the term separation algebra refers to gradually more general structures in
Chapters 3, 4 and 7. Similarly, the treatment of program variables and open
terms is essentially the same throughout the thesis, but details and notation
gradually improve.

1.4 Details of publications

Here follows a list of publications I contributed to during my PhD studies
and an account of what role I had in the research and writing phases. The
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publications where I only played a small role are not included in this thesis.

1. Modular Verification of Linked Lists with Views via Separa-
tion Logic. Jonas Braband Jensen, Lars Birkedal and Peter Sestoft.
In Proceedings of FTfJP, 2010. Extended and revised version in Jour-
nal of Object Technology, 2011. Included as Chapter 2 of this thesis.

This article is a summary of my MSc thesis but rewritten from scratch
during my PhD. I wrote Sections 3–8 and the appendices.

2. Verifying Object-Oriented Programs with Higher-Order Sep-
aration Logic in Coq. Jesper Bengtson, Jonas Braband Jensen,
Filip Sieczkowski and Lars Birkedal. In Proceedings of ITP, 2011.
Included as Chapter 3 of this thesis.

This is the first article about what we later dubbed the Charge! plat-
form. Charge! is a development in the Coq proof assistant that aims
to be a sound platform for the verification of object-oriented programs
in a subset of Java. It was developed jointly by Jesper Bengtson, Filip
Sieczkowski and myself, and we all contributed to every aspect of it.

In the writing of this article, my main responsibilities were Sections 2
and 5. Both sections are about specification patterns in higher-order
separation logic for object-oriented programs.

Compared to the published version of the article, this thesis corrects
a typo in the definition of the later operator: {0} is corrected to S,
which gives a somewhat non-standard definition of later, but it is the
one we used, and it is the one that corresponds to the Löb rule printed
underneath it.

3. Fictional Separation Logic. Jonas Braband Jensen and Lars Birkedal.
In Proceedings of ESOP, 2012. Included as Chapters 4 and 5 of this
thesis.

I developed this theory under guidance from Lars, who steered it from
being specific to object-orientation and rather overcomplicated to be-
ing general and simple.

I wrote a majority of the article text and the entirety of the appendix.

4. Charge! – A framework for higher-order separation logic in
Coq. Jesper Bengtson, Jonas Braband Jensen and Lars Birkedal. In
Proceedings of ITP, 2012. Not included in this thesis.

This is the second article about the Charge! platform that I contributed
to. It focuses on automation using Coq tactics, and my contributions
were minor. I wrote the Coq code behind the example in Section 3,
and I wrote Section 2 about the formal handling of program variables.
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5. High-Level Separation Logic for Low-Level Code. Jonas B.
Jensen, Nick Benton and Andrew Kennedy. In Proceedings of POPL,
2013. Included as Chapter 6 of this thesis.

This article reports on another another development featuring sepa-
ration logic in Coq. This one belongs to my co-authors at Microsoft
Research Cambridge, where I did a 3-month internship in the spring
of 2012.

I did the writing and the research behind the sections focused on sep-
aration logic: Sections 3–5.1, 5.3–5.5, 6.2–6.3 and 7–8.

6. Coq: The world’s best macro assembler? Andrew Kennedy, Nick
Benton, Jonas B. Jensen and Pierre-Evariste Dagand. In Proceedings
of PPDP, 2013. Not included in this thesis.

While the article above focuses on the program verification aspects of
the MSR Cambridge Coq development, this follow-up article focuses
on the program generation aspects. In particular, parts of the develop-
ment works as a macro assembler with powerful support for embedded
domain-specific languages.

My role in the writing of this article was minor. My main contribu-
tions were to the infrastructure in the Coq development that allowed
lexically-scoped labels to be verified and assembled.
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Modular Verification of Linked Lists
with Views via Separation Logic

Jonas Braband Jensena Lars Birkedala Peter Sestofta

a. IT University of Copenhagen

Abstract We present a separation logic specification and verification of
linked lists with views, a data structure from the C5 collection library for
.NET. A view is a generalization of the well-known concept of an iterator.
Linked lists with views form an interesting case study for verification since
they allow mutation through multiple, possibly overlapping, views of the
same underlying list. For modularity, we build on a fragment of higher-
order separation logic and use abstract predicates to give a specification
with respect to which clients can be proved correct. We introduce a novel
mathematical model of lists with views, and formulate succinct modular
abstract specifications of the operations on the data structure. To show
that the concrete implementation realizes the specification, we use frac-
tional permissions in a novel way to capture the sharing of data between
views and their underlying list.

We conclude by suggesting directions for future research that arose
from conducting this case study.

Keywords Separation logic, formal verification, modularity

1 Introduction

Separation logic [Rey02] is a generalization of Hoare logic better suited for reasoning
about heap data in imperative programming. In particular, the logic’s separating con-
junction connective directly supports reasoning about situations where heap-allocated
data can be separated into non-overlapping regions. The challenging applications of
separation logic are therefore those involving partially overlapping data structures.
List iterators provide one example of such structures, and they have been studied
extensively in connection with separation logic [KAB+09, BRZ07, HH08].

Here we investigate the linked list with views (LLWV) data structure from the
C5 library [KS06] of collections for the .NET framework. Where an iterator can be
thought of as marking a current position in a list, a view more generally marks a list
segment, so an iterator is just a special case of a view (of length zero). A list may
have multiple views, the views may overlap, and modifications to the underlying list
show through the views and vice versa; for more details, see Section 2.

Jonas Braband Jensen, Lars Birkedal, Peter Sestoft. Modular Verification of Linked Lists with Views
via Separation Logic. In Journal of Object Technology, vol. , no. , , pages 1–20. Available at
http://www.jot.fm
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Hence views provide a much more powerful mechanism than iterators but also
pose new challenges for verification. In particular, the co-dependencies between a
list and its views are typically implemented by cyclic pointer structures, and there
is no “obvious” mathematical model of a linked list with views. We find that this
makes the data structure a challenging and compelling case study for specification
and verification with separation logic and related approaches.

1.1 Related Work

Hoare pioneered the proof method of relating a concrete (object-oriented) implemen-
tation to an abstract (functional, mathematical) implementation [Hoa72]; we use the
same technique here. We also use the concepts of precondition and postcondition,
which are due to Dijkstra [Dij76] and which form the basis for Meyer’s design-by-
contract methodology [Mey92]. However, we do not use class invariants, because they
appear to fall short when, as in the case of linked lists with views, there is no hier-
archical “ownership” relation among the objects making up a data structure [Par07].
Hence our formalization is not immediately expressible in contemporary frameworks
such as the Java Modeling Language [CKLP06] or .NET Code Contracts [FBL10].

The formalization and proof of lists with views, presented in this paper, uses sepa-
ration logic and has many similarities with separation logic formalizations of iterators.
The iterators from the Java standard library seem to be the most popular objects of
study [KAB+09, Par05, HH08, BRZ07]. In contrast to the list views discussed here,
such iterators become invalid after structural modification to the underlying list, and
so it becomes an important part of the specification to capture the protocol that
constrains the permitted order of method calls.

Krishnaswami et al. [KAB+09] use higher-order separation logic to give an elegant
specification of iterators. It allows multiple iterators at the same time, but iterators
are read-only.

Parkinson [Par05] specifies iterators in first-order separation logic, instead using
counting permissions to share the list between multiple iterators. Again, modification
of the list through iterators is not considered.

Haack & Hurlin [HH08] use fractional permissions to give a specification that
allows both multiple iterators and (limited) modification of the list through iterators.
The techniques used to achieve this have similarities to what we present in Section 4.3.

In contrast to iterators, it is always well-defined how views behave after the un-
derlying list is modified.

1.2 Significance for Object-Oriented Languages

The present work focuses on a particular aspect of object-oriented languages: local up-
date (by assignment x.f=e to object fields) combined with sharing (by having multiple
references x and y denoting the same object). This combination means that multiple
surface “names” x.f and y.f denote the same updatable data structure, which makes
object-oriented programs hard to reason about using the basically substitution-based
approach of Hoare logic. This is not just a formal problem, but also a challenge to in-
formal program understanding, as evidenced by the recent emphasis on the virtues of
immutable data; see for instance Josh Bloch’s admonishment “Minimize Mutability”
[Blo08, Item 15].

In this paper we use separation logic to handle the combination of field update
and sharing. We also assume the object-oriented virtue of encapsulation: a client

Journal of Object Technology, vol. , no. ,
18
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1 2 3 4 5︸ ︷︷ ︸
v1

v1︷︸︸︷
1

v2︷︸︸︷
2︸ ︷︷ ︸

v3

(a) (b)

Figure 1 – (a) Linked list with one view. (b) Linked list with two 1-item views and one
2-item view.

cannot arbitrarily access the internals of objects on which it operates. This is of
course essential for preservation of invariants and hence for correctness.

On the other hand, we do not address inheritance and virtual methods. Although
these are important and challenging features, we believe they are rather orthogonal
to the formalization here, and related work has devised one way in which to handle
them formally in the context of separation logic [PB08].

1.3 Outline

Section 2 introduces linked lists with views as they are seen from the perspective of
a client, and Section 3 describes how they were implemented in this case study.

We give our specification in Section 4 in a fragment of intuitionistic higher-order
separation logic [BBTS05], using abstract predicates [PB05], such that clients can
be verified without revealing information about the concrete implementation of the
data structure. The overall idea in this approach is to use a predicate L(x, α) that
relates a data structure pointer x in the implementation to a mathematical object α
that models the data structure abstractly. Partial-correctness specifications for each
method f on x are then expressed in terms of this predicate; they are typically of the
form {L(x, α)}x.f(. . .) {L(x, α′)}.

We present the concrete realization of the abstract predicates in Section 5, using
fractional permissions.

Section 6 presents and discusses the alternative models we have considered.
An earlier version of the results in this paper was published at the FTfJP’10

workshop.

2 Linked Lists With Views

The linked list data structure is well known and is a standard example of separation
logic specification and proof. Here we consider linked lists with views, a data structure
designed as part of the C5 collection library [KS06] that provides several new verifica-
tion challenges. A view is a window on a contiguous segment of a list; a list can have
multiple, possibly overlapping, views; see Figure 1 for two examples. An update to
a view affects the underlying list as well as overlapping views; and an update to the
underlying list may affect multiple views. Finally, a view can be slid left and right
along a list, and can be grown and shrunk. A list and its views are closely intertwined,
and the update semantics means that there is no “obviously right” model in terms of
standard mathematical structures such as sequences, trees and sets.

Journal of Object Technology, vol. , no. ,
19



4 · Jonas Braband Jensen, Lars Birkedal, Peter Sestoft

List Node View

- value: int

sen
bgn, end

viewsB, viewsE

prev, next

nextB, nextE

Figure 2 – Class diagram of the implementation.

But why consider the intricacies of these list views at all? Because views have
several interesting applications. With views, one can give linked lists and array lists
a single common interface, while avoiding the explicit manipulation of internal linked
list nodes and hence raising questions of the list’s structural integrity, yet provide
efficient item access in linked lists, via views instead of item indices.

In fact, a zero-item view is a cursor that points between (or before or after) list
items, and there are n+ 1 distinct zero-item views on an n-item list; whereas a one-
item view is a cursor that points at a list item, and there are n distinct one-item
views on an n-item list. Just for this reason, views may be beneficial even for array
list algorithms where it is often unclear whether an index i is meant to point before,
at, or after the i’th item.

Moreover, a view implements the same interface and supports the same operations
as linked lists and array lists, so “sort this particular list segment” can be decomposed
into “create a view comprising this particular list segment” and “sort the view”. This
orthogonality considerably reduces the number of operations that the list interface
must exhibit: a single “search view” operation replaces “search entire list”, “search
list starting at index i”, “search list starting at index i and ending at item i + n”.
Furthermore, views (and lists) can be looked at “backwards” so “search view” actually
represents 3 · 2 = 6 different search functions. The same holds for other kinds of list
traversal, clearing, shuffling, and so on. Thus views lead to a considerably leaner and
more regular list library design.

Apart from the use as between-item and at-item cursors, and to achieve orthogo-
nality of list operations, our updatable slidable views enable elegant implementation
of some algorithms such as Graham’s point elimination scan when computing a 2D
convex hull [KS06, section 11.3]; here three-item views are called for.

The actual C5 data structures are generic, or parametrically polymorphic, in the
item type. In this paper we assume for simplicity that list items are just integers,
but our proofs do not rely on this fact, and the specification and verification can be
extended using higher-order verification techniques for generics [SBP10].

3 Implementation

A class diagram of the implementation data structures is shown in Figure 2. An
LLWV has class List; it uses a circular doubly-linked list of Node objects internally
to hold the list items. Each node n has a field value that holds the item value; fields
prev and next for the doubly-linked list representation; and fields viewsB and viewsE
that hold references to two singly-linked lists of View objects: a list of those views
that begin just after n and a list of those views that end just before n.

It is an invariant of the data structure that if v.bgn points to n, then n.viewsB
points to a list with next-pointers nextB in which v occurs exactly once; and similarly
for end/viewsE/nextE.

Journal of Object Technology, vol. , no. ,
20
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: List

sen

: Node

value = ?

next

prevprev

: Node

value = 1
viewsE = null

: Node

value = 2
viewsB = null

   : View

nextE = null

end

viewsE
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v
ie
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   : View

nextB = null

prev
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end
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w
sE

   : View

nextB = null
nextE = null

bgn

bgn

viewsB

nextB nextE

end

Figure 3 – Object diagram showing the heap layout of the example LLWV from Fig-
ure 1(b), with two items and three partially-overlapping views. Dashed arrows make
up the list of items, while solid arrows are pointers maintained to support views.

There is a sentinel node, whose value we ignore, at the beginning and end of the
list. In fact, a single Node object can be used as both start sentinel and end sentinel
since the sets of fields used in these two roles are disjoint.

As an example of such a data structure, Figure 3 depicts a possible heap repre-
sentation of the LLWV from Figure 1(b).

The actual code we have verified is not the original C# code from the C5 li-
brary but a Java implementation that has been written from scratch for verification
purposes. It captures the essence of what makes LLWV interesting to verify with-
out containing all the bells and whistles that would make it pleasant to use in an
engineering context. The most important differences are discussed in Section 5.1.

4 Abstract Specification

This section presents a mathematical model of LLWV and specifications of its methods
using abstract predicates. Verification of clients will rely only on these, not on the
actual implementation of LLWV.

4.1 Model

Our specifications will revolve around a predicate L(l, α) that relates a LLWV l (a
pointer in the implementation) to a model “bex-list” α. A bex-list describes the list
items along with all views defined on the list. It seems necessary to join these objects
together in one monolithic model because the behaviour of views is defined such that
a list and its views can affect each other to a great extent.
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The actual definition of the predicate L(l, α) is shown in Section 5 and is used
only when proving an implementation correct. The definition is hidden from clients
to prevent them from depending on implementation details [PB05].

Let View be the class of views. Then bex-lists α, β, γ are defined as follows, where
“::” denotes list construction:

α, β, γ ::= ε
∣∣ B b :: α

∣∣ E e :: α
∣∣ Xx :: α

b, e ⊂
fin

pointers to View

x ∈ Z

Intuitively, B b means that the views in set b begin at this position in the list.
Similarly, E e means that the views in e end at this position in the list, and Xx means
that the item x is stored at this position in the list. Such a list element B b, E e or
Xx is called a bex.

We will always want the bexes to appear in the order B,E,X,B,E,X, . . .. To enforce
this, we define a predicate ord(α, t, t′), where t, t′ ∈ {B,E,X}, expressing that α is an
ordered bex-list starting with a bex of constructor t and ending just before a bex of
constructor t′. Formally, let ord be the least predicate satisfying

ord(ε, t, t)

ord(B b :: α,B, t)⇐= ord(α,E, t)

ord(E e :: α,E, t)⇐= ord(α,X, t)

ord(Xx :: α,X, t)⇐= ord(α,B, t)

Note that we here used the symbols B,E,X both as (unary) constructors and as
(nullary) tags.

Concatenation is defined as usual for cons-based lists and is written αβ. It can be
shown by induction on α that

∃t′. ord(α, t, t′) ∧ ord(β, t′, t′′) ⇐⇒ ord(αβ, t, t′′)

An empty LLWV is modelled by a bex-list B b :: E e :: ε, abbreviated be. A
singleton LLWV is modelled by a bex-list b1e1x1b2e2. In general, a LLWV is modelled
by an ordered bex-list that begins with a B and ends with an E (i.e. just before an
X). We call such lists well-formed. We will also need the notion of the length of a
bex-list α, written |α|. In summary,

wf(α) , ord(α,B,X)

|α| , number of X’s in α

The bex-list may not seem like the most intuitive or obvious construction, but
it will turn out that specification of the public methods on linked lists with views
becomes very simple when using it. Some other models we tried before choosing the
bex-list model are discussed in Section 6.

4.2 Operations on Lists

The List class has methods for the list operations one would expect: insertion, removal,
subscripting, size query, etc. We now discuss the specifications of the most important
operations; Figure 4 gives a summary of all the specifications.
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A simple and typical specification is that of setValue(i, x′), which replaces the item
at index i ≥ 0 in list l by x′:

{ L(l, αxγ) } l.setValue(|α|, x′) { L(l, αx′γ) }

This specification says that, provided list l is described by the bex-list αxγ before the
call, then after the call l.setValue(|α|, x′), list l is described by the bex-list αx′γ. That
is, all list items and views remain the same, except that the item at index i = |α| has
been replaced by x′.

Note how part of the precondition is made implicit by restricting the first method
argument to have the form |α|, instead of an arbitary integer i. Together with the
assertion L(l, αxγ) about the shape of the list, this restriction ensures that the item
index |α| is legal for the list.

The client should not know the exact definition of L, but it is part of the specifi-
cation that L(l, α) implies wf(α).

It is an important detail that pre- and postconditions are both expressed in terms
of equations in bex-lists and their lengths. This makes it easy for sequential client
code to establish that the postcondition of one call implies the precondition of the
next.

Removal and insertion can also be defined just in terms of bex-list equalities and
operations on finite sets. Here, the ] operator is a partial version of set union ∪ that
is defined only for disjoint sets.

{ L(l, αb′ exb e′γ) } l.remove(|α|) { L(l, α(b′ ] b)(e′ ] e)γ) }

{ L(l, αbeγ) } l.insert(|α|, x) { L(l, α(B(b ∩ e))ex(B(b \ e))(E∅)γ) }
Note that they both preserve well-formedness (and therefore ordering) of the bex-list.
The complicated-looking postcondition of insert captures exactly the rules of how
views that begin or end around the point of insertion are affected [KS06, Jen10].

4.3 Operations on Views

A new view is created on a list l by calling l.view, specified in Figure 4. We use the
special variable ret for the return value and use the notation bv to mean the partial
operation b ∪ {v} where v /∈ b.

There is an abstract predicate V(v, α) that is like L for most purposes; it says that
view v is described by the bex-list α. As with L, clients are guaranteed that V(v, α)
implies wf(α). As stated in Figure 4, the methods that work on both lists and views
have identical specifications except that l and L are replaced by v and V in the case
of views. For example, the specification of setValue on a view would be

{V(v, αxγ) } v.setValue(|α|, x′) {V(v, αx′γ) }

The V predicate is not given directly in any method postcondition. Instead, the
client is given a guarantee that the following implication is valid:

L(l, αbvβevγ) =⇒ V(v, bβe) ∗ ∀b′, β′, e′.
[
V(v, b′β′e′) −∗ L(l, αb′vβ′e′vγ)

]
(1)

In words, this expresses that a heap containing a LLWV l with a view v can be
separated into two parts, say, h and h′. Heap h satisfies the V predicate and can
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{ true } new List() { L(ret, (B ∅) (E ∅)) }

The following methods are also available on views, with the same specification except
that l and L are replaced by v and V.

{ L(l, α) } l.count() { L(l, α) ∧ ret = |α| }
{ L(l, αxγ) } l.getValue(|α|) { L(l, αxγ) ∧ ret = x }
{ L(l, αxγ) } l.setValue(|α|, x′) { L(l, αx′γ) }
{ L(l, αbβeγ) } l.view(|α|, |β|) { L(l, αbretβeretγ) }
{ L(l, αb′ exb e′γ) } l.remove(|α|) { L(l, α(b′ ] b)(e′ ] e)γ) }
{ L(l, αbeγ) } l.insert(|α|, x) { L(l, α(B (b ∩ e))ex(B (b \ e))(E ∅)γ) }

Methods specific to views:

{ L(l, αbvβevγ) ∧ αbβeγ = α′b′β′e′γ′ }
v.slide(|α′| − |α|, |β′|)
{ L(l, α′b′vβ′e′vγ′) }

{ L(l, αbvβevγ) ∧ αbβeγ = α′b′β′e′γ′ ∧ |β′| = |β| }
v.slide(|α′| − |α|)
{ L(l, α′b′vβ′e′vγ′) }

{ L(l, αbvβevγ) } v.dispose() { L(l, αbβeγ) }
{V(u, αbvβevγ) } v.dispose() {V(u, αbβeγ) }
{ L(l, αevγ) } v.atEnd(l) { L(l, αevγ) ∧ ret = (γ = ε) }
{ L(l, αbuβevγ) } u.span(v) { L(l, αbu,retβev,retγ) }
{ L(l, bαevγ) } l.span(v) { L(l, bretαev,retγ) }
{ L(l, αbvγe) } v.span(l) { L(l, αbv,retγeret }

Guarantees about predicates:

L(l, α) =⇒ wf(α), V(v, α) =⇒ wf(α),

L(l, αbvβevγ) =⇒ V(v, bβe) ∗ ∀b′, β′, e′.
[
V(v, b′β′e′) −∗ L(l, αb′vβ′e′vγ)

]

Figure 4 – Summary of specifications. The notation bv means b ∪ {v} where v /∈ b.
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thus be used for calling the various methods on views, such as setValue in Section 4.2,
leading to a V-assertion for the same v but with a different bex-list. Heap h′ satisfies
that given any such modified bex-list b′β′e′, if h′ is extended with a heap in which
view v is described by b′β′e′, then this extended heap describes the original list l
except that the sublist delimited by view v has been modified.

The verifier, i.e. the person or heuristic attempting to verify the program, can use
(1) to convert from L to V at any convenient time. To get back to L again, he can use
the separating modus ponens rule: P ∗ (P −∗ Q) =⇒ Q. This is not too different
from how the frame rule is used in separation logic in general; in fact, the following
specification-logic rule follows from (1).

{V(v, bβe) } c {V(v, b′β′e′) }
{ L(l, αbvβevγ) } c { L(l, αb′vβ′e′vγ) } (2)

In words, if command c changes a view v from bβe to b′β′e′, then if v is a view on some
underlying list l described by αbvβevγ, then c will also change list l to αb′vβ′e′vγ. In
particular, the list “tails” α and γ are unaffected by c.

Hence (2) reads as a kind of frame rule, where α and γ constitute the frame that
is disregarded while verifying c. Like the frame rule, its application happens at the
discretion of the verifier rather than being driven by the program.

Note that (1) is more general than (2) since the conversions between L and V do
not have to follow the nesting discipline of a tree in (1).

5 Verification of Implementation

We saw the implementation of the LLWV data structure in Section 3 and the speci-
fications and guarantees involving the L and V predicates in Section 4. To tie these
together, we must give the definitions of L and V. The I predicate (I as in Items) will
be a key ingredient in this.

We define L as asserting the existence of a sentinel node ns, which marks both the
beginning and ending of the list:

L(l, α) , wf(α) ∗ ∃ns. l.sen 7→ ns ∗ I(ns, ns, α)

For an ordered bex-list α and nodes n and n′, I(α, n, n′) asserts what must hold of a
heap that spans α between n and n′. It does so by a case analysis on whether α is
empty or starts with B, E or X. It is a convenient property of the bex-list model that
no indirection is needed here: the bex-list as seen by the client corresponds so closely
with the heap layout that I can be syntax-directed on α.

Another convenient property is that I admits an excellent correspondence between
separation on the heap and concatenation of bex-lists:

I(n, n′′, αβ) ⇐⇒ ∃n′. I(n, n′, α) ∗ I(n′, n′′, β) (3)

The definition of I and all predicates required by it is shown in Figure 5.
One might easily be tempted to define V(v, α) as

wf(α) ∗ ∃b, β, e. α = bβe ∗ ∃nb, ne. I(nb, ne, bvβev) (4)

Expanding the I predicate will lead to the assertions v.bgn 7→ nb ∗ v.end 7→ ne needed
by methods on the view as a starting points for accessing its items.
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L(l, α) , wf(α) ∗ ∃ns. l.sen 7→ ns ∗ I(ns, ns, α)

I(n, n, ε) , true

I(n, n′′,B b :: α) , IB(n, b) ∗ I(n, n′′, α)

I(n, n′′,E e :: α) , ∃n′. N(n, n′) ∗ IE(n′, e) ∗ I(n′, n′′, α)

I(n, n′′,Xx :: α) , IX(n, x) ∗ I(n, n′′, α)

N(n, n′) , n.next 7→ n′ ∗ n′.prev 7→ n

IB(n, b) , BList(n, b) ∗~
v∈b

v.bgn 7→ n

IE(n, e) , EList(n, e) ∗~
v∈e

v.end 7→ n

IX(n, x) , n.value 7→ x

BList(n, b) , ∃vh. n.viewsB 7→ vh ∗ BSeg(vh, null, b)

BSeg(vt, vt, ∅) , true

BSeg(v1, vt, b
v) , v1 ∈ bv ∗ ∃v2. v1.nextB 7→ v2 ∗ BSeg(v2, vt, b

v \ {v1})

EList,ESeg are defined like BList,BSeg.

Figure 5 – Definition of L and related predicates. The ~ operator is iterated separating
conjunction [Rey02].

But for such a definition of V, Equation (1) will not hold. The issue is that it
permits the asserter of V to write to bgn and end, allowing him to “unhook” the view
from its underlying list and place it somewhere else in memory. The challenge is to
somehow ensure that the sentinel nodes have not changed when it is time to convert
the V predicate back to L.

One way to solve this problem could be to provide clients with the weaker but
often sufficient Equation (2) instead of (1). That could be be proved by induction
over the command c, showing that c will not modify v.bgn or v.end because any
write to these fields would either be denied because the fields are private, or it would
happen through one of the methods of View, whose specifications would have to be
strengthened to guarantee that they do not modify to those fields either.

Clearly, this approach is problematic. It requires reasoning about field access
modifiers in the logic, which has not been formalized in the separation logics found in
the literature to date. It also provides a weaker guarantee to the client, and it lacks
modularity because we cannot add or change methods without invalidating the proof.

To find a definition of V that validates (1), look back to the original issue: the
asserter of V must be able to read the bgn and end fields but not write them. A popular
approach to expressing this is to amend the assertion logic with fractional permissions
[BCOP05, BRZ07, HH08], a technique borrowed from concurrent programming that
turns out to be useful for sequential programs as well [BRZ07, HH08].

In separation logic with fractional permissions, the points-to assertion x.f 7→ a is
extended to read x.f

z7→a, where 0 < z ≤ 1. A permission z = 1 gives read/write access
to the field x.f , while any smaller permission gives read-only access. The assertion

logic is then defined such that the following is valid: x.f
z7→a ∗ x.f z′

7→a ⇐⇒ x.f 7 z+z′
−−−→a.

Now we can give a definition of V that works by modifying (4) to take away half
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List Node View

- value: int

sen bgn, end

views

prev, next

next

underlying

Figure 6 – A class diagram that, compared to Figure 2, more closely resembles the data
structure found in the original C5 library [KS06].

of the permissions to the bgn and end fields:

V(v, α) , wf(α) ∗ ∃b, β, e. α = bβe ∗ ∃nb, ne.[
v.bgn

0.57→ nb ∗ v.end 0.57→ ne −~ I(nb, ne, b
vβev)

]

Here, septraction [CPV07] (−~) is used to “subtract” the permissions on its left side
from those on its right side.

Septraction is not essential for this definition, but it does make it much more
elegant than it would have been otherwise. Since we are using an intuitionistic sep-
aration logic, the standard definitions of septraction developed for classical versions
of the logic do not work. In Appendix A, we describe a definition of septraction that
works in intuitionistic separation logic.

With the above definition of V, Equation (1) can be proved valid – see Appendix B.
It is an important point that the client does not need to know that fractional permis-
sions are being used behind the scenes; clients may reason entirely as if there were no
fractions.

5.1 Discussion

It turns out that (1) and (2) can be generalized to treat more than one view. For
example, given a list with two non-overlapping views v1 and v2, one can mutate those
views independently (V(v1, β1) ∗ V(v2, β2)) and later establish that L holds for their
underlying list and a suitably-modified bex-list.

With the implementation we have discussed so far, this generalization is straight-
forward to prove; see Appendix B. The data structure used in the original C5 code
is different, however: it has a global list of views for the whole LLWV rather than
for each node. This is illustrated in Figure 6. The two implementations are obser-
vationally indistinguishable through their public interface, but the implementation
with a global view-list does not seem to allow defining a V-predicate that admits the
assertion V(v1, β1) ∗ V(v2, β2) for non-overlapping views.

This is because operations on v1 and v2 such as item insertion and removal will
have to traverse the same global list of views; operations to create and dispose views
are even going to modify this list, so it cannot just be shared read-only using fractional
permissions.

Since a separation logic assertion describes concrete heap contents, the validity of
assertions such as (1) depends only on the choice of data structure in the implemen-
tation, not on the code in methods. On the other hand, in object-oriented languages
there is a difference between (a) objects that cannot interfere with each other in any
observable way and (b) objects that have disjoint heap footprints. Clearly, (b) im-
plies (a), but the converse does not hold because of encapsulation: interference can be
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Method S I V F

+List::init X X
+l.count X X
+l.getValue X X X
+l.isEmpty X X
+l.insert X X X2

+l.insertFirst X
+l.insertLast X
+l.remove X X X
+l.removeFirst X
+l.removeLast X
+l.setValue X
+l.span X X
+l.view X X X
−l.getNode X X X
−l.insertNode X X X
−View::init/0 X X
−View::init/2 X X X2

+v.atEnd X
+v.count X X
+v.dispose X
+v.getValue X X X
+v.isEmpty X X
+v.insert X X X

Method S I V F

+v.insertFirst X
+v.insertLast X
+v.remove X X X
+v.removeFirst X
+v.removeLast X
+v.setValue X X
+v.slide/1 X X X
+v.slide/2 X X X
+v.span X X
+v.view X X X
−v.getNode X X X
−v.insertNode X X X
−Node::init X X
−n.addViewB X X X
−n.addViewE X X
−n.insertAfter X X X
−n.moveViewsToB X X X
−n.moveViewsToE/1 X X X1

−n.moveViewsToE/2 X X X
−n.remove X X X
−n.removeViewB X X
−n.removeViewE X X

Notes:
1: Has been verified in the sense that its twin method with b’s instead of e’s has been verified.
2: The body of this method has been verified, but it contains calls to unverified methods.

Table 1 – Overview of what methods have been specified (S), implemented (I), verified
(V), and which would make non-trivial future work (F). Public methods are prefixed
with +, private methods are prefixed with −, and overloaded methods are suffixed
with /n to refer to the n-argument version.

observed only through a data structure’s public methods, whereas the actual sharing
in the heap is described by its (private) fields. In separation logic as we use it here,
assertions about objects that are “observationally separate” cannot be separated by
the ∗ connective, although this connective is critical for reasoning.

Therefore, a guideline for writing code to be modularly verified with separation
logic is to design data structures such that observationally separate parts of the data
structure are also disjoint on the heap, whenever possible.

Finding a good way to lift this limitation is likely to be crucial in reasoning
about real-world code. The ideas presented in the recent work of Dinsdale-Young
et al. [DYDG+10] look promising in this respect. The intuition seems to be that
access to shared data is governed by a protocol, and this protocol can be as simple as
requiring read-only access or perhaps as complex as required to solve this problem.
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5.2 Method bodies

So far we have focused on method specifications and heap layout. To have a complete
verified library of LLWV, one of course needs to write the Java code implementing
each method and prove that it satisfies its specification in a dialect of separation logic
that has been shown sound with respect to the programming language semantics. To
get a feeling for whether the specifications are practically useful, sample client code
should be verified.

Table 1 summarises which methods were specified, implemented and verified, in-
cluding several private methods in class Node that we do not discuss here [Jen10].
The main accomplishment is that List::remove and everything it calls has been veri-
fied. Two sample clients have been verified: an implementation of Bubble Sort, sliding
views of length 2 across the list, has been verified for safety, and a toy example that
uses views to duplicate and increment every list item has been verified for correctness.

Method body proofs were done by hand and are presented as code interleaved
with assertions in [Jen10]. Bex-lists and the most often used lemmas about them
were formalised in the Coq proof assistant.

6 Alternative models

We chose the model and specifications in Section 4 with the following goals in mind.

• The model should admit short and clear specifications: it should be easy to see
whether the intended meaning of an operation is expressed by its specification.

• Sequential composition should be straightforward: postconditions and precon-
ditions should have the same form to make it easy to show that one operation’s
postcondition implies the next operation’s precondition.

• The model should admit local reasoning: effects that are local in the implemen-
tation should also look local in the model.

• The specification should highlight the similarity between lists and views. Lists
and views can be used interchangeably in many situations, so the reasoning in
those cases should also be the same.

We believe that the bex-list model and the corresponding specifications achieve
these goals. For comparison, we will here discuss some alternatives we considered
before settling on bex-lists.

6.1 First Attempt

A straightforward way of modelling lists with views is to separate the model α into
three components (L,B,E): a traditional cons-based list L of items, and maps B and
E assigning to each view the offset in L where the view begins and ends. Formally,

α = (L,B,E) ∈ int list× (View
fin
⇀ N)× (View

fin
⇀ N)

However, models that involve indices seem to lead to specifications that fail with
respect to all four goals listed above. For example, the following attempt to specify
remove, where (·) is list concatenation, leads to a postcondition that requires the
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verifier to reason about subtraction.

{ L(l, (L · x::L′, B,E)) }
l.remove(|L|)
{
∃B′, E′. L(l, (L · L′, B′, E′)) ∧
B′ = {[v 7→ if j ≤ |L| then j else j − 1]

∣∣ [v 7→ j] ∈ B} ∧
E′ = {[v 7→ if j ≤ |L| then j else j − 1]

∣∣ [v 7→ j] ∈ E}
}

The specification also lacks locality: it is not clear from the specification that the
update only affects the immediate vicinity of x since apparently all indices above x are
decremented; however this reflects a property of the model, not the implementation.

6.2 Second Attempt

The first attempt above can be used as a basis of something better, though. First,
lift the length function of cons-based lists to work for the whole model α = (L,B,E),
defining |α| , |L|. Then define concatenation α1 · α2 of models:

α1 · α2 ,
(
L1 · L2, B1 ] (map (+|L1|) B2),

E1 ] (map (+|L1|) E2)
)

where (Li, Bi, Ei) = αi for i ∈ {1, 2}
and ] is union of maps with disjoint domains.

Note that model concatenation · is associative.
Finally, observe that any model α = (L,B,E) can be written as a concatenation

of four basic building blocks:

ε , (nil, {}, {}) Empty list

x , (x :: nil, {}, {}) Single-item list

[v , (nil, {[v 7→ 0]}, {}) View begins

]v , (nil, {}, {[v 7→ 0]}) View ends

With these ingredients, we can give concise specifications to most methods. In
particular, remove looks much better than in the first attempt, and also more local
and concise than when using bex-lists (Section 4.2):

{ L(l, α · x · γ) } l.remove(|α|) { L(l, α · γ) }

Most other specifications resemble their bex-list cousins. For example,

{ L(l, α · x · γ) } l.setValue(|α|, x′) { L(l, α · x′ · γ) }
{ L(l, α · β · γ) } l.view(|α|, |β|) { L(l, α · [ret · β · ]ret · γ) }

The drawbacks of this model are due to α · β = β · α when |α| = |β| = 0. This
equality allows us to freely re-order views analogously to how the sets b and e in
the bex-list model allow it. However, to correctly specify insert we need a restrictive
variant ◦ of concatenation in the precondition:

{ L(l, α ◦ β) } l.insert(|α|, x) { L(l, α · x · β) }
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Using the normal concatenation operator · in place of ◦ in the precondition would
allow the verifier to “choose” whether a view that begins or ends at the insertion
point would end up to the left or right of the inserted item x. But since those two
outcomes are observably different, such a specification would allow deriving a logical
contradiction.

Instead, we define ◦ to be an (even more) partial variant of concatenation. In-
tuitively, a list that can be written α1 ◦ α2 must have no views that end just before
the first item in α2, and any view that begins just after the last item of α1 must be
empty. Formally,

α1 ◦ α2 , α1 · α2

if ∀v. [v 7→ 0] /∈ E2

and
(
[v 7→ |L1|] ∈ B1 ⇒ [v 7→ |L1|] ∈ E1

)

where (Li, Bi, Ei) = αi for i ∈ {1, 2}

Thus, the specification of insert is only beautiful because it hides its complexity
beneath the definition of ◦. The verifier would have to develop a theory to establish
◦ before every call to insert. But the approach is not very general since ◦ is specific to
the semantics of the insert operation. If some other variant of insert were introduced,
there would have to be another restricted concatenation operator with a corresponding
theory.

The same problem of herding the views onto the desired side of a concatenation
appears if we want to formulate a theorem such as (1), which is crucial for independent
reasoning about views. It is also no longer possible to define L to be as syntax-directed
on α as for bex-lists, which makes it harder to prove the implementation correct.

It was our desire to syntactically restrict where views may begin and end that made
us abandon this model in favour of the bex-lists, which make explicit the grouping of
all views that begin or end at each list position. The specifications that arose from
the “second attempt” model remain more elegant and intuitive, though, and it would
be interesting to investigate whether it could work well if the semantics of LLWV
were changed.

7 Future work

The future work specific to the LLWV data structure includes:

• The semantics of inserting new items in a LLWV [KS06] can easily lead to sur-
prises since nearby views can be affected [Jen10]. Thus, it should be investigated
whether views, and insertion in particular, could be defined differently, and if
so, whether something better than the bex-list model can be found.

• In verifying both the LLWV implementation and sample clients [Jen10], proofs
often required solving equations in ordered bex-lists. The solutions were often
intuitively simple but somewhat laborious to prove formally. It seems likely that
a decision procedure could be developed for a useful fragment of these equations.

• As discussed in Section 2, the “list with views” abstraction can be applied to
both linked lists and array lists. It remains future work to formally verify the
array list case. Also, C5 has a variation of LLWV that uses hash-indexes to
implement operations such as deciding whether a given item resides within a
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given view in constant expected time. Verification of this would surely be a
challenge.

• It might be advantageous to replace the C5 library’s current implementation of
views (mentioned in Section 5.1) with that presented in Section 3, which seems
to have some algorithmic advantages. To support the extension to hash-indexed
lists and views mentioned above, it would need to have distinct start and end
sentinels, though.

• Could some of these ideas be applied to specifying powerful iterators such as
java.util.ListIterator? Java’s list iterators permit more modifications to the list
than iterators studied elsewhere in the separation logic literature, though they
are still less powerful than views.

• It would be interesting to give a specification of LLWV in other recent logics for
shared mutable data structures, e.g., region logic [BNR08], and compare with
the present formulation.

The remaining points concern improvements to the logic motivated by insights
gained from this case study.

• Current dialects of separation logic do not take advantage of the guarantees
offered by memory-safe languages such as Java and C#. As discussed in Section
5.1, separation logic works as if all fields were public; it would be interesting to
integrate reasoning about field access modifiers into the logic.

• Fractional permissions proved useful here, but they seem to be a somewhat
blunt instrument when used in a sequential setting. Their read-only guarantee
can only be applied at the granularity of a field, so it is impossible to express
invariants such as the least significant bit of a field being read-only.

• The original C5 implementation of LLWV employs the System.WeakReference
class to let lists point to their views through references that are ignored by the
garbage collector. Modelling such weak references in separation logic might be
interesting future work.

8 Conclusion

Several things can be done when implementing a data structure to ease verification
with separation logic. When modularity is desired, data should be laid out such
that heap separation coincides with lack of observable interference. Modularity and
local reasoning demand more features from the logic, such as existentially-quantified
predicates and fractional permissions, but in return they lead to cleaner specifications.

The bex-list model was chosen over other candidates because it better satisfied the
goals listed in Section 6. It seems that there is a balance between choosing a model
that is easy to verify and one that is easy to work with for clients: with a model that
directly mimics the heap layout, the implementation will be easier to prove correct,
but clients are likely to find the model unnatural to work with. The bex-list aims to
be a compromise between the two extremes.

Further discussion and subtleties can be found in [Jen10].
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A Septraction

In this appendix we define the septraction operator, −~, which was used in the defi-
nition of V.

A.1 Formal set-up

Our heap model is identical to the model of heaps with fractional permissions in
[BCOP05]:

Heap , ObjId× Field
fin
⇀ Val× {π ∈ Q | 0 < π ≤ 1}

When h1, h2 ∈ Heap we write h1#h2 to say that the composition of h1 and h2 is
defined, and h1 ◦ h2 denotes this composition. There is an ordering on heaps defined
as h1 v h iff ∃h2#h1. h1 ◦ h2 = h.

The separation logic used throughout this article is intuitionistic, meaning that
all formulas satisfy the monotonicity condition: they must continue to hold in any
larger heap [IO01]. Thus, an assertion is a monotone function from heaps to Booleans,
where the Booleans are ordered as false v true.

A.2 The septraction operator

To get an intuitionistic septraction connective that has most of the desirable properties
of its classical cousin [CPV07], we use the following definition.

Definition 1

(P −~ Q) h , ∃h0 v h. ∃h′#h0. Pr P h′ ∧Q (h0 ◦ h′) where

Pr P h , P h ∧ ∀h′ v h. P h′ ⇒ h′ = h �
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Note that this definition satisfies the monotonicity condition since the same sub-
heap h0 continues to exist under any larger heap.

The operator Pr : (Heap
mon
→ 2) → (Heap → 2), where 2 denotes the Booleans, is

Yang’s precising operator (see the discussion of this operator in [Rey08]). In partic-
ular, Pr P h holds if h is a minimal heap such that P h.

To formulate the inference rules for septraction, we need the notion of a strongly
supported assertion:

Definition 2 An assertion P is strongly supported if for any heap h, the set of sub-
heaps of h that satisfy P is either empty or has a least element. �

All the assertions in Figure 5 are strongly supported (modulo a few side conditions;
see [Jen10] for details).

Lemma 1. For strongly supported assertions P ,

Q |= P

Q |= P ∗ (P −~ Q)
and

Q |= P ∗ Q′
P −~ Q |= Q′

where |= denotes entailment among assertions; that is, P |= Q iff for all h, P h
implies Q h.

Proof. Both proofs rely on the fact that if P h then there exists hmin v h such that
Pr P hmin.

A.3 Remark

An alternative to Definition 2 is the following:

Definition 3 An assertion P is weakly supported if for any heaps h1, h2 that are both
subheaps of the same h and both satisfy P , there exists a heap h12 that is a subheap
of both h1 and h2 and satisfies P . �

Definitions 2 and 3 are usually equivalent and therefore used interchangeably
[Rey08], but it turns out that they are not the same when fractional permissions

are used. For example, the assertion ∃z > 0. x.f
z7→ y is weakly but not strongly sup-

ported. This assertion is useful and natural since it represents a read-only points-to
assertion that can be arbitrarily split across ∗.

B Conversions between lists and views

In this appendix we prove Equation (1) and its generalization to multiple views.
For brevity, we abbreviate a bex-list of the form bβe as B and write Bv to mean

bvβev. Recall that the notation bv means b ∪ {v} where v /∈ b.
The following lemma captures the essence of why Equation (1) is valid.

Lemma 2. If ord(α,B,B) and wf(B), then

I(n′1, n2, αB
v) |= V(v,B) ∗

[
V(v,B′) −∗ I(n′1, n2, αB′v)

]
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Proof. The left part expands to I(n′1, n1, α) ∗ I(n1, n2, Bv) for some n1, and it is the
right part of this conjunction that is interesting to us. By Lemma 1, that part entails

v.bgn
0.57→ n1 ∗ v.end 0.57→ n2 ∗ (v.bgn

0.57→ n1 ∗ v.end 0.57→ n2 −~ I(n1, n2, B
v)), where the side

condition on the lemma follows from expanding the I predicate and its constituents.
In that formula, the septraction part is just the definition of V, so we can contract

that and get v.bgn
0.57→ n1 ∗ v.end 0.57→ n2 ∗ V(v,B).

If we can now show that

v.bgn
0.57→ n1 ∗ v.end 0.57→ n2 |= V(v,B′) −∗ I(n1, n2, B′v), (5)

then we have altogether that

I(n′1, n2, αB
v) |= I(n′1, n1, α) ∗ V(v,B) ∗

[
V(v,B′) −∗ I(n1, n2, B′v)

]
,

and since Q′ ∗ (P −∗ Q) |= P −∗ (Q ∗ Q′) we may then join the two I predicates by
Equation (3) to finish the proof.

To show (5), first apply the fact that Q |= P −∗ (P ∗ Q) to get V(v,B′) −∗
(V(v,B′) ∗ v.bgn0.57→n1 ∗ v.end0.57→n2). On the right of the separating implication, unfold

the definition of V to replace V(v,B′) with v.bgn
0.57→ nb ∗ v.end 0.57→ ne −~ I(nb, ne, B

′v)
for new existentials nb and ne. Since there is an assertion I ′, too long to write out
here, such that I(nb, ne, B

′v) ≡ I ′ ∗ v.bgn 7→ nb ∗ v.end 7→ ne, and we can split the
permissions on v.bgn and v.end in two halves, by the second half of Lemma 1 we can

get I ′ ∗ v.bgn0.57→nb ∗ v.end0.57→ne. Recall that this is still in separating conjunction with

v.bgn
0.57→ n1 ∗ v.end 0.57→ n2, which lets us conclude that n1 = nb and n2 = ne. Now we

can join the split permissions and contract the I predicate again to get I(n1, n2, B
′v),

which is what we wanted.

In the following, let i ≥ 1 and m ≥ 0. The~ operator binds tighter than ∗.
Lemma 3. If ord(αi,B,B) and wf(Bi) for all i, then

~
i≤m

I(ni, ni+1, αiB
vi
i ) |= ~

i≤m
V(vi, Bi) ∗

[~
i≤m

V(vi, B
′
i) −∗ ~

i≤m
I(ni, ni+1, αiB

′vi
i )
]

Proof. By induction on m. The base case is trivial. For the inductive case, let us first
abbreviate the above formula to read

I(≤ m) |= V (≤ m) ∗ [V ′(≤ m) −∗ I ′(≤ m)]

Thus, we start out with I(≤ m), which entails I(< m) ∗ I(m), and applying the
induction hypothesis to the left part gives us

(
V (< m) ∗ [V ′(< m) −∗ I ′(< m)]

)
∗

I(m). For the remaining part, since Lemma 2 gives us that

I(m) |= V (m) ∗ [V ′(m) −∗ I ′(m)],

then the whole entails I(≤ m) |= V (≤ m) ∗ [V ′(≤ m) −∗ I ′(≤ m)] due to the fact
that (P −∗ Q) ∗ (P ′ −∗ Q′) |= (P ∗ P ′) −∗ (Q ∗ Q′).
Theorem 1.

L(l, α1B
v1
1 · · ·αmB

vm
m γ) |= ~

i≤m
V(vi, Bi) ∗

[~
i≤m

V(vi, B
′
i) −∗ L(l, α1B

′v1
1 · · ·αmB

′vm
m γ)

]

Proof. By Lemma 3 and Equation (3)

Corollary 1. Equation (1) is valid; i.e.,

L(l, αbvβevγ) =⇒ V(v, bβe) ∗
[
V(v, b′β′e′) −∗ L(l, αb′vβ′e′vγ)

]
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Abstract. We present a shallow Coq embedding of a higher-order sepa-
ration logic with nested triples for an object-oriented programming lan-
guage. Moreover, we develop novel specification and proof patterns for
reasoning in higher-order separation logic with nested triples about pro-
grams that use interfaces and interface inheritance. In particular, we
show how to use the higher-order features of the Coq formalisation to
specify and reason modularly about programs that (1) depend on some
unknown code satisfying a specification or that (2) return objects con-
forming to a certain specification. All of our results have been formally
verified in the interactive theorem prover Coq.

1 Introduction

Separation Logic [12,16] is a Hoare-style program logic for modular reasoning
about programs that use shared mutable data structures. Higher-order separa-
tion logic [3] (HOSL) is an extension of separation logic that allows for quan-
tification over predicates in both the assertion logic (the logic of pre- and post-
conditions) and the specification logic (the logic of Hoare triples). HOSL was
proposed with the purposes of (1) reasoning about data abstraction via quan-
tification over resource invariants, and (2) making formalisations of separation
logic easier by having one general expressive logic in which it is possible to de-
fine predicates, etc., needed for applications. In this article we explore these two
purposes further; we discuss each in turn.

The first purpose (data abstraction) has been explored for a first-order lan-
guage [4], for higher-order languages [9,11], and for reasoning about generics
and delegates in object-oriented languages (without interfaces and without in-
heritance) [18]. In this article we show how HOSL can be used for modular
reasoning about interfaces and interface-based inheritance in an object-oriented
language like Java or C ]. Our current work is part of a research project in
which we aim to formally specify and verify the C5 generic collection library [8],
which is an extensive collection library that is used widely in practice and whose
implementation makes extensive use of shared mutable data structures. A first
case-study of one of the C5 data structures is described in [7]. C5 is written in
C ] and is designed mainly using interface inheritance, rather than class-to-class
inheritance; different collection modules are related via an inheritance hierarchy
among interfaces. For this reason we focus on verifying object-oriented programs
that use interfaces and interface-based inheritance.
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We explore the second purpose (formalisation) by developing a Coq formal-
isation of HOSL for an object-oriented class-based language and show through
verified examples how it can be used to reason about interfaces and inheritance.

Our formalisation makes use of ideas from abstract separation logic [6] and
thus consists of a general treatment of the assertion logic that works for many
models and for a general operationally-inspired notion of semantic command.
Our general treatment of the logic is also rich enough to cover so-called nested
triples [17], which are useful for reasoning about unknown code, either in the
form of closures or delegates [18] or, as we show here, in the form of code match-
ing an interface. To reason about object-oriented programs, we instantiate the
general development with the heap model for our object-oriented language and
derive suitable proof rules for the language. This approach makes it easier in the
future to experiment with other storage models and languages, e.g., variants of
separation logic with fractional permissions.

Summary of contributions. We formalize a shallow Coq embedding of a higher-
order separation logic for an object-oriented programming language. We have
designed a system that allows us to write programs together with their spec-
ifications, and then prove that each program conforms to its specification. All
meta-theoretical results have been verified in Coq1.

We introduce a pattern for interface specifications that allows for a modular
design. An interface specification is parametrised in such a way that any class
implementing the interface can be given a suitably expressive specification by
a simple instantiation of the interface specification. Moreover, we show how to
use nested triples to, e.g., write postconditions in the assertion logic that require
a returned object to match a certain specification. Our approach enables us to
verify dynamically dispatched method calls, where the dynamic types of the
objects are unknown.

Outline. The rest of this article is structured as follows. In Section 2 we demon-
strate the patterns we use for writing interfaces by providing a small example
program that uses interface inheritance and proving that it conforms to its spec-
ification. In Section 3 we cover the language and memory-model independent
kernel of our Coq formalisation. In Section 4 we specialise our system to handle
Java-like programs by providing constructs and a suitable memory model for a
subset of Java. Section 5 covers related work, and Section 6 concludes.

2 Reasoning with interfaces

To demonstrate how our logic is applied, we will use the example of a class
Cell that stores a single value and which is extended by a subclass Recell that
maintains a backup of the last overwritten value and has an undo operation. This
example is originally due to Abadi and Cardelli [1]; a variant of it was also used

1 The Coq development accompanying this article can be found at
http://itu.dk/people/birkedal/papers/hosl_coq-201105.tar.gz
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interface ICell {
int get();
void set(int v);
}

class ProxySet {
static void proxySet(ICell c, int v) {
c.set(v);
}
}

class Cell implements ICell {
int value;

Cell() { }
int get() {
return this.value;
}
void set(int v) {
this.value = v;
}
}

interface IRecell extends ICell {
void undo();
}

class Recell implements IRecell {
Cell cell;
int bak;

Recell() {
this.cell = new Cell();
}
int get() {
return this.cell.get();
}
void set(int v) {
this.bak = this.cell.get();
this.cell.set(v);
}
void undo() {
this.cell.set(this.bak);
}
}

Fig. 1. Java code for the Cell-Recell example with interface inheritance.

by Parkinson and Bierman [14] to show how their logic deals with class-to-class
inheritance.

We add to this example a method proxySet, which calls the set method of
a given object reference. It is a challenge to give a single specification to this
method that is powerful enough to expose any additional side effects the set
method might have in arbitrary subclasses. We will see in this section how our
specification style achieves this, and it is sketched in Section 5 how this compares
to related work.

Our model programming language is a subset of both Java and C ]. It leaves
out class-to-class inheritance and focuses on interface inheritance. This mode of
inheritance captures the essential object-oriented aspect of dynamic dispatch,
while the code-reuse aspect has to be explicitly encoded with class composition.
A Java implementation of the Cell-Recell example can be found in Figure 1.

2.1 Interface ICell

Interface ICell from Figure 1 is modelled as a parametrised specification that
states conditions for whether a class C behaves “Cell-like”. In the following, val
denotes the type of program values, in our case the union of integers, Booleans
and object references. Also, UPred(heap) is the type of logical propositions over
heaps, i.e., the spatial component of the assertion logic (see Section 3.1 for the
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precise definition).

ICell , λC : classname. λT : Type. λR : val → T → UPred(heap).

λg : T → val . λs : T → val → T.

(∀t : T. C::get(this) 7→ {R̂ this t} {r. R̂ this t ∧ r = g t}) ∧ (1)

(∀t : T. C::set(this, x) 7→ {R̂ this t} {R̂ this (ŝ t x)}) ∧ (2)

(∀t, v. g (s t v) = v) (3)

There is some notation to explain here. ICell is a function that takes five argu-
ments and returns a result of type spec, which is the type of specifications. The
logical connectives at the outer level (∧ and ∀) thus belong to the specification
logic. The parameter R is the representation predicate of class C, so R c t intu-
itively means that c is a reference to an object that is mathematically modelled
by the value t of type T . The parameters g and s are functions that describe how
get and set inspect and transform this mathematical value. They are constrained
by (3) to ensure that get will actually return the value set with set.

The notation C::m(p̄) 7→ {P} {r. Q} from (1) and (2) specifies that method
m of class C has precondition P and postcondition Q. The arguments in a call
will be bound to the names p̄ in P and Q, and the return value will be bound to
r in Q. We support both static and dynamic methods, where dynamic methods
have an additional first argument, as seen in (1) and (2). The precise definition
is given in Section 4.2.

The notation f̂ from (1) and (2) lifts a function f such that it operates
on expressions, including program variables, rather than operating directly on
val . It is a technical point that can be ignored for a first understanding of this
example, but it is crucial for making HOSL work in a stack-based language.
Details are in Section 3.2.

The type of T refers to the Type universe hierarchy in Coq.

2.2 Method proxySet

Consider method proxySet from Figure 1. Operationally, calling proxySet(c, v)
does the same as calling c.set(v), and we seek a specification that reflects this.
It is crucial for modularity that proxySet can be specified and verified only once
and then used with any implementation of ICell that may be defined later. We
give it the following specification.

ProxySet spec , ∀C, T,R, g, s. ICell C T R g s→
∀t : T. ProxySet::proxySet(c, x) 7→ {c : C ∧ R̂ c t} {R̂ c (ŝ t x)}

The assertion c : C means that the object referenced by c is of class C. Thus,
the caller of proxySet can pass in an object reference of any class C as long as C
can be shown to satisfy ICell .

This specification is as powerful as that of set in ICell since it essentially for-
wards it. Any class that behaves Cell-like should be able to encode the behaviour
of its set method by a suitable choice of R and s. We will see in Section 2.6 that
it, for instance, is possible to pass in a Recell and deduce how proxySet affects
its backup value.
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2.3 Class Cell

A Java implementation of Cell can be found in Figure 1. We model constructors
as static methods that allocate the object before running the initialisation code
and return the allocated object, which is what happens in the absence of class-
to-class inheritance.

We give class Cell the following specification, which is a conjunction of what
we will call an interface specification and a class specification. These correspond
respectively to the dynamic and static specifications in [14].

Cell spec , ∃RCell. ICell Cell val RCell (λv. v) (λ , v. v) ∧ Cell class RCell

where

Cell class , λRCell : val → val → UPred(heap).

Cell::new() 7→ {true} {∃v. R̂Cell this v} ∧
(∀v. Cell::get(this) 7→ {R̂Cell this v} {r. R̂Cell this v ∧ r = v}) ∧
(∀v. Cell::set(this, x) 7→ {R̂Cell this v} {R̂Cell this x})

The representation predicate RCell is quantified such that its definition is visible
only while proving the specifications of Cell, thus hiding the internal representa-
tion of the class from clients [4,13].

It is crucial that RCell is quantified outside both the class and the interface
specification such that the representation predicate is the same in the two. In
practice, a client will allocate a Cell by calling new, which establishes RCell; later,
to model casting the object reference to its interface type, the client knows that
ICell holds for this same RCell.

The specifications of get and set in Cell class are identical to their counter-
parts in ICell when C, T,R, g, and s, are instantiated as in Cell spec. In general,
the class specification can be more precise than the interface specification, sim-
ilarly to the dynamic and static specifications of [14].

To prove Cell spec, the existential RCell is chosen as λc, v. c.value 7→ v. We
can then show that Cell class RCell holds by verifying the method bodies of get,
set and init, and the correctness of get and set can be used as a lemma in proving
the interface specification. In this way, each method body is verified only once.

2.4 Interface IRecell

To show the analogy to interface inheritance at the specification level, we ex-
amine an interface for classes that behave Recell-like. The Java code for that is
IRecell in Figure 1. The specification corresponding to this interface follows the
same pattern as ICell :

IRecell , λC : classname. λT : Type. λR : val → T → UPred(heap).

λg : T → val . λs : T → val → T. λu : T → T.

ICell C T R g s ∧ (4)

(∀t : T. C::undo(this) 7→ {R̂ this t} {R̂ this (u t)}) ∧ (5)

(∀t, v. g (u (s t v)) = g t) (6)
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Notice that interface extension is modelled by referring to ICell in (4). We
do not have to respecify get and set since they were already general enough in
ICell due to it being parametric in g and s. Note how equation (6) specifies the
abstract behaviour of undo via g and s.

There is a pattern to how we construct a specification-logic interface predicate
from a Java interface declaration. For each method m(x1, . . . , xn), we add a
parameter fm : T → valn → (val × T ). The product (val × T ) can be replaced
with just val or T if the method should have no side effects or no return value,
respectively. We then add a method specification of the form:

∀t : T. C::m(p̄) 7→ {R̂ this t} {r. R̂ this (π2 (f̂m p̄ t)) ∧ r = π1 (f̂m p̄ t)}.

2.5 Class Recell

The specification of class Recell follows the same pattern as with Cell:

Recell spec , ∃RRecell : val → val → val → UPred(heap).
IRecell Recell (val × val) R g s u ∧ Recell class RRecell

where R = λthis, (v, b). RRecell this v b, g = λ(v, b). v,
s = λ(v, b), v′. (v′, v), u = λ(v, b). (b, b),

and Recell class is defined analogously to Cell class.

2.6 Class World

The correctness of the above specifications only matters if it enables client code
to instantiate and use the classes. The client code in World demonstrates this:

class World {
static ICell make() {
Recell r = new Recell();
r.set(5);
ProxySet::proxySet(r, 3);
r.undo();
return r;
}

static void main() {
ICell c = World::make();
assert c.get() == 5;
}
}

The body of make demonstrates the use of proxySet. Operationally, it should
be clear that r has the value 3 and the backup value 5 after the call to proxySet.
This can also be proved in our logic despite using a specification of proxySet that
was verified without knowledge of Recell and its backup field.

Upon returning from make, we choose to forget that the returned object is
really a Recell, upcasting it to ICell. Its precise class is not needed by the caller,
main, which only needs to know that the returned object will return 5 from get.

We capture the interaction between these two methods with the following
specification, in which FunI : spec → UPred(heap) injects the specification logic
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into the logic of propositions over heaps, thus generalising the concept of nested
triples. Section 3.5 describes FunI in more detail.

World spec ,World::main() 7→ {true} {true} ∧

World::make() 7→ {true}
{
r. ∃C, T,R, g, s. F̂unI (ICell C T R g s) ∧
∃t. R̂ r t ∧ g t = 5 ∧ r : C

}

The make method is specified to return an object whose class C is unknown,
but we know that C satisfies ICell .

This pattern of returning an object of an unknown type that satisfies a par-
ticular specification often comes up in object-oriented programming: think of
the method on a collection that returns an iterator, for example. The essence
of this pattern is to have a parametrised specification S : classname → spec

and a method specified as D::m() 7→ {true} {r. ∃C. r : C ∧ F̂unI (S C)}. A
more straightforward alternative to such a specification – one that does not re-
quire an embedding of the specification logic in the assertion logic – would be
∃C. S C ∧ D::m() 7→ {true} {r. r : C}. However, this restricts the body of m
to only being able to return objects of one class. The method body cannot, for
example, choose at run time to return either a C1 or a C2, where both C1 and
C2 satisfy S. We find that the most elegant way to allow the method body to
make such a choice is to embed the specification in the postcondition.

Using the notion of validity from Definition 5 in Section 3.4 we can now prove
that the whole program will behave according to specification:

Theorem 1. (ProxySet spec ∧ Cell spec ∧ Recell spec ∧World spec) is valid.

3 Abstract representation

The core of our system is designed to be language independent. To allow for dif-
ferent memory models, we adopt the notion of separation algebras from Calcagno
et al. [6]; we can then instantiate an assertion logic with any separation algebra
suitable for the problem at hand. Commands are modelled as relations on the
program state, which in turn consists of a mutable stack and a heap. Finally, we
define an expressive specification logic that can be used to reason about semantic
commands.

We use set-theoretic notation to describe our formalisation as this makes the
theories easier to read; in Coq we model these sets as functions into Prop, which
is the sort of propositions in Coq.

3.1 Uniform predicates

Definition 1 (Separation algebra). A separation algebra is a partial, can-
cellative, commutative monoid (Σ, ◦, 1) where Σ is the carrier, ◦ is the monoid
operator, and 1 is the unit element.
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Intuitively, Σ can be thought of as a type of heaps, and the ◦-operator as
composition of disjoint heaps. Hence we refer to the elements of Σ as heaps.
Two heaps are compatible, written h1 # h2 if h1 ◦ h2 is defined. A heap h1 is a
subheap of a h2, written h1 v h2, if there exists an h3 such that h2 = h1 ◦ h3.
We will commonly refer to a separation algebra by its carrier Σ.

A uniform predicate [5] over a separation algebra is a predicate on heaps and
natural numbers; it is upwards closed in the heaps and downwards closed in the
natural numbers.

UPred(Σ ) , {p ⊆ Σ × N | ∀g,m. ∀h w g. ∀n ≤ m. (g,m) ∈ p→ (h, n) ∈ p)}
The upward closure in heaps ensures that we have an intuitionistic separation
logic as is desirable for garbage-collected languages.

The natural numbers are used to connect the uniform predicates with the
step-indexed specification logic – this connection will be covered in Section 3.5.

We define the standard connectives for the uniform predicates as in [5]:

true , Σ × N false , ∅
p ∧ q , p ∩ q p ∨ q , p ∪ q

∀x : U. f ,
⋂

x:U f x ∃x : U. f ,
⋃

x:U f x

p→ q , {(h, n) | ∀g w h. ∀m ≤ n. (g,m) ∈ p→ (g,m) ∈ q}
p ∗ q , {(h1 ◦ h2, n) | h1 # h2 ∧ (h1, n) ∈ p ∧ (h2, n) ∈ q}
p −∗ q , {(h, n) | ∀m ≤ n. ∀h1#h. (h1,m) ∈ p→ (h ◦ h1,m) ∈ q}

For the quantifiers, U is of type Type, i.e. the sort of types in Coq, and f is any
Coq function from U to UPred(Σ ). This allows us to quantify over any member
of Type in Coq.

3.2 Stacks

Stacks are functions from variable names to values: stack , var → val .
Two stacks are said to agree on a set V of variables if they assign the same

value to all members of V : s 'V s′ , ∀x ∈ V. s x = s′ x. In order to define
operators that take values from the stack as arguments we introduce the notion
of a stack monad. This approach is similar to that of Varming and Birkedal [20].

sm T , {(f : stack → T, V : P(var)) | ∀s, s′. s 'V s′ → f s = f s′}
Intuitively, V is an over-approximation of the free program variables in f . For
any m = (f, V ) ∈ sm T , we write m s to mean f s and fv m to mean V .

Theorem 2. sm is a monad with return operation λx : T. ((λ . x), ∅) and bind
operation λm : sm T. λf : T → sm U. ((λs. f (m s) s), fv m ∪⋃

t∈T fv (f t)).

We use the stack monad to model expressions (which can be evaluated to
values using data from the stack), pure assertions (that represent logical proposi-
tions that are evaluated without using the heap), and assertions (that represent
logical propositions that are evaluated using both the heap and the stack).

expr , sm val pure , sm Prop asn(Σ) , sm UPred(Σ )
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We create an assertion logic by lifting all connectives from UPred(Σ ) into
asn(Σ). The definitions and properties of the liftings follow from the fact that
sm is a monad (Theorem 2).We prove that both the uniform predicates and the
assertions model separation logic [3].

Theorem 3. For any separation algebra Σ, UPred(Σ ) and asn(Σ) are complete
BI-algebras.

The stack monad is also used for the lifting operator f̂ that was introduced in
Section 2.1. The operator takes a function f , and returns a function f̂ where any
argument type T that is passed to f is replaced with sm T , and any return type
U with sm U . As an example, the representation predicate R in the specification
for ICell , which has type val → T → UPred(heap), is lifted to R̂ in the assertion-

logic formulas of the specification. The resulting type for R̂ is sm val → sm T →
sm UPred(heap), i.e. expr → sm T → asn(heap).

We have to make this lifting explicit in specifications because it restricts
how program variables behave under substitution. We have that (f̂ e)[e′/x] =

f̂ (e[e′/x]) for any f : val → UPred(Σ ), but it is not the case that (g e)[e′/x] =
g (e[e′/x]) for any g : expr → asn(Σ) because g e may have more free program

variables than those appearing in e, whereas f̂ e cannot, by construction. To
make HOSL useful in a stack-based language, where such substitutions are com-
monplace, we therefore typically quantify over functions into UPred(Σ ) that we
then lift to asn(Σ) where needed.

3.3 Semantic commands

To obtain a language-independent core, we model commands as indexed relations
on program states (each consisting of a stack and a heap) – a semantic command
will relate, in a certain number of steps, a state either to another state or to an
error. The only requirements we impose on these commands are that they do
not relate to anything in zero steps, and that they satisfy a frame property
that will allow us to infer a frame-rule for all semantic commands. Intuitively,
the semantic commands can be seen as abstractions of rules of a step-indexed
big-step operational semantics. More formally, we have the following definitions.

Definition 2 (pre-command). A pre-command c̃ relates an initial state to
either a terminal state or the special err state:

precmd , P(stack ×Σ × ((stack ×Σ) ] {err})× N)

We write (s, h, c̃) n x to mean that (s, h, x, n) ∈ c̃.

Definition 3 (Frame property). A pre-command c̃ has the frame property in
case the following holds. If (s, h1, c̃) 6 n err and (s, h1 ◦ h2, c̃) n (s′, h′) then
there exists h′1 such that h′ = h′1 ◦ h2 and (s, h1, c̃) n (s′, h′1).
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Definition 4 (Semantic command). A semantic command satisfies the frame
property and does not evaluate to anything in zero steps.

semcmd , {ĉ ∈ precmd | ĉ has the frame property ∧ ∀s, h, x. (s, h, ĉ) 6 0 x}

To facilitate the encoding of imperative programming languages in our frame-
work, we create the following semantic commands that can be used as building
blocks for that purpose. These commands are similar to the ones found in [6].

id seq ĉ1 ĉ2 ĉ1 + ĉ2 ĉ∗ assume P check P

Intuitively, these semantic commands are defined as follows: The id-command
is the identity command – it does nothing; the seq-command executes two com-
mands in sequence; the +-operator nondeterministically executes one of two
commands; the ∗-command executes a command an arbitrary amount of times;
the assume-command assumes a pure assertion that can be used to prove cor-
rectness of future commands; the check-command works like the id-command
as long as a pure assertion can be inferred. Recall that pure assertions are logical
formulas that are evaluated without using the heap.

Theorem 4. id, seq, +, ∗, assume, and check are semantic commands.

3.4 Specification logic

With the assertion logic and the semantic commands in place, we can define
the specification logic. Semantically, a specification is a downwards-closed set of
natural numbers; this allows us to reason about (mutually) recursive programs
via step-indexing.

spec , {S ⊆ N | ∀m,n. m ≤ n ∧ n ∈ S → m ∈ S}

The set spec is a complete Heyting algebra under the subset ordering, i.e.,
logical entailment (|=) is modelled as subset inclusion. Hence a specification S
is valid if S = N.

Given assertions P and Q, and semantic command ĉ, we define a Hoare triple
specification:

{P}ĉ{Q} , {n | ∀m ≤ n. ∀k ≤ m. ∀s, h. (h,m) ∈ P s→ (s, h, ĉ) 6 k err ∧
∀h′, s′. (s, h, ĉ) k (s′, h′)→ (h′,m− k) ∈ Q s′}

A program is proved correct by proving that its specification is valid:

Definition 5. A specification is valid, written |= S, when true |= S.

3.5 Connecting the assertion logic with the specification logic

We define an embedding of the specification logic into the assertion logic as
follows:

FunI : spec → UPred(Σ ) , λS. Σ × S.
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Lemma 1. FunI is monotone, preserves implication, and has a left and a right
adjoint, when spec and UPred(Σ ) are treated as poset categories.

From the second part of this lemma it follows that FunI preserves both finite
and infinite conjunctions and disjunctions, which entails that all specification
logic connectives are preserved by the translation.

3.6 Recursion

The specification connectives defined in the previous section are not enough for
our purposes. When proving a program correct (by proving a formula of the
form |= S), it is commonplace that the proof of one part of specification in S
requires other parts of S – a typical example is recursive method calls, where
the specification of the method called must be available in the context during
its own verification. To accomplish this, we borrow the later operator (.) from
Gödel-Löb logic (see [2]).

.S , {n+ 1 | n ∈ S} ∪ S
This operator can be used via the Löb rule, which allows us to do induction

on the step-indexes of the semantic commands.

Γ ∧ .S |= S 0 ∈ Γ → 0 ∈ S
Γ |= S

Löb

In the inductive case .S is found on the left hand side of the turnstile and can
hence be used to prove S.

4 Instantiation to an object-oriented language

We define a Java-like language with syntax of programs P shown below. The
language is untyped and does not need syntax for interfaces; these exist in the
specification logic only.

We use a shallow embedding for expressions, which we denote with e, as
shown in Section 3.2.

P ::= C∗ f ∈ (field names)

C ::= class C f∗ (m(x̄){c; return e})∗
c ::= x := alloc C | x := e | x := y.f | x.f := e | x := y.m(ē)

| x := C::m(ē) | skip | c1; c2 | if e then c1 else c2

| while e do c | assert e

In order to provide a concrete instance of the assertion logic, we construct a sep-
aration algebra of concrete heaps. The carrier set is heap , (ptr × field)

fin
⇀ val ,

with the values defined as the union of integers, Booleans and object references.
The partial composition h1 ◦ h2 is defined as h1 ∪ h2 if dom h1 ∩ dom h2 = ∅;
otherwise the result is undefined. The unit of the algebra is the empty map,
emp. We denote this separation algebra (heap, ◦, emp) with heap. The points-to
predicate is defined as v.f 7→v′ , {(h, n) | h w [(v, f) 7→ v′]}.

47



12 Jesper Bengtson, Jonas B. Jensen, Filip Sieczkowski, and Lars Birkedal

skip ∼sem id
Skip-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

c1; c2 ∼sem seq ĉ1 ĉ2
Seq-Sem

c ∼sem ĉ

while e do c ∼sem seq (seq (assume e) ĉ)∗ (assume ¬e) While-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

if e then c1 else c2 ∼sem (seq (assume e) ĉ1) + (seq (assume ¬e) ĉ2)
If-Sem

Fig. 2. The skip, sequential composition, conditional and loop cases of the semantics
relation

4.1 Semantics of the programming language

We define the semantics of the programming language commands by relating
them to semantic commands instantiated with heap as the separation algebra.
We write c ∼sem ĉ to denote that the syntactic command c is related to the
semantic command ĉ. The ∼sem relation can be thought of as a function; it is
defined as a relation only because this was more straightforward in Coq.

The commands skip, ;, if , and while can be related directly to composites
of the general semantic commands, defined in Section 3.3. The definition of ∼sem

for these commands can be found in Figure 2. For the remaining commands,
new semantic commands must be created.

In particular, for method calls, we define a semantic command

call x C::m(ē) with c ĉ

that, intuitively, calls method m of class C with arguments ē and assigns the
return value to x; the command c is the method body, and ĉ is its corresponding
semantic command. This semantic command works uniformly for both static and
dynamic methods, since in the dynamic case we can pass the object reference as
an additional argument. The definition of this semantic command is shown in
Figure 3. The definition makes use of a predicate

C::m(p̄){c; return r} ∈ P

which holds in case method m in class C has parameters p̄ and method body
c in program P. The program parameter P has been left implicit in the other
rules. The notation [p̄ 7→ (ē s)] denotes a finite map that associates each p in p̄
with the e at the corresponding position in ē evaluated in stack s.

The requirement that the method body is related to the semantic command
is not enforced by the construction of the semantic command, but rather by the
definition of ∼sem for respectively static and dynamic method calls:

c ∼sem ĉ

x := C::m(ē) ∼sem call x C::m(ē) with c ĉ
SCall-Sem
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([p̄ 7→ (ē s)], h, ĉ) n (s′, h′) C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ) n+1 (s[x 7→ (r s′)], h′)

Call

C::m(p̄){c; return r} /∈ P
(s, h, call x C::m(ē) with c ĉ) 1 err

Call-Fail1

C::m(p̄){c; return r} ∈ P |p̄| 6= |ē|
(s, h, call x C::m(ē) with c ĉ) 1 err

Call-Fail2

([p̄ 7→ (ē s)], h, ĉ) n err C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ) n+1 err

Call-Fail3

Fig. 3. Semantic call commands.

c ∼sem ĉ y : C

x := y.m(ē) ∼sem call x C::m(y, ē) with c ĉ
DCall-Sem

4.2 Syntactic Hoare triples and the concrete assertion logic

Hoare triples for syntactic commands are defined in the following manner:

{P}c{Q} , ∀ĉ. c ∼sem ĉ→ {P}ĉ{Q}.

From this definition we infer and prove sound Hoare rules for all commands of
our language. To define the rule for method calls we first define the predicate
that asserts the specification of methods, introduced in Section 2.1.

C::m(p̄) 7→ {P} {r. Q} , ∃c, e. wf (p̄, r, P,Q, c) ∧ C::m(p̄){c; return e} ∈ P
∧ {P}c{Q[e/r]},

where wf is a predicate to assert the following static properties: the method
parameter names do not clash; the pre- and postcondition do not use any stack
variables other than the method parameters and this (the postcondition may
also use the return variable); the method body does not modify the values of
the method parameters or this.

Selected proof rules for syntactic commands are shown in Figure 4. Note the
use of the later operator (.) in the method call rule; this means that this method
call rule will often be used in connection with the Löb rule.

Theorem 5. The rules in Figure 4 are sound with respect to the operational
semantics.
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|= {P}skip{P} Skip {P}c1{Q} ∧ {Q}c2{R} |= {P}c1; c2{R}
Seq

{P ∧ e}c1{Q} ∧ {P ∧ ¬e}c2{Q} |= {P}if e then c1 else c2{Q}
If

{P ∧ e}c{P} |= {P}while e do c{P ∧ ¬e} While
P ` e

|= {P}assert e{P} Assert

|= {true}x := alloc C{∀∗f ∈ fields(C). x.f 7→null} Alloc

|= {P}x := e{∃v. P [v/x] ∧ x = e[v/x]} Assign |= {x.f 7→ }x.f := e{x.f 7→e} Write

P ` y.f 7→e
|= {P}x := y.f{∃v. P [v/x] ∧ x = e[v/x]} Read

Γ |= .C::m(p̄) 7→ {P} {r. Q} |p̄| = |y, ē|
Γ |= {y : C ∧ P [y, ē/p̄]}x := y.m(ē){∃v. Q[x, y[v/x], ē[v/x]/r, p̄]} DCall

Γ |= .C::m(p̄) 7→ {P} {r. Q} |p̄| = |ē|
Γ |= {P [ē/p̄]}x := C::m(ē){∃v. Q[x, ē[v/x]/r, p̄]} SCall

P ` P ′ Q′ ` Q
{P ′}c{Q′} |= {P}c{Q} Consequence

∀x ∈ fv R. c does not modify x

{P}c{Q} |= {P ∗R}c{Q ∗R} Frame

P ` P ′ Q′ ` Q fv P ⊆ fv P ′ fv Q ⊆ fv Q′

C::m(p̄) 7→ {P ′} {r. Q′} |= C::m(p̄) 7→ {P} {r. Q} Consequence-MSpec

fv R ⊆ {this} ∪ p̄
C::m(p̄) 7→ {P} {r. Q} |= C::m(p̄) 7→ {P ∗R} {r. Q ∗R} Frame-MSpec

Fig. 4. Specification logic rules for syntactic Hoare triples

5 Related work

Formalisations of higher-order separation logic have been proposed before, e.g.
by Varming and Birkedal [20], who developed an Isabelle/HOL formalisation of
HOSL for partial correctness for a simple imperative language with first-order
mutually recursive procedures, using a denotational semantics of the program-
ming language, and by Preoteasa [15], who developed a PVS formalisation for
total correctness using a predicate-transformer semantics for a similar program-
ming language.

Parkinson and Bierman treated an extended version of the Cell-Recell exam-
ple in [14], improving upon their earlier work in [13]. Their approach is to tailor
the specification logic to build in a form of quantification over families of rep-

50



Verifying object-oriented programs with higher-order separation logic in Coq 15

resentation predicates following a fixed pattern determined by the inheritance
tree of the program. This construction is known as abstract predicate families
(APFs).

Where our logic allows quantification over a representation type T , as used
in Section 2.1, APFs have a built-in notion of variable-arity predicates to achieve
same effect: representation predicates of a subclass can add parameters to the
representation predicate they inherit. Class Cell defines a two-parameter repre-
sentation predicate family Val , which is extended to three arguments in Recell.
A Recell r having value 2 and backup field 1 would be asserted as Val(r, 2, 1).
This assertion implies Val(r, 2), which in turn implies ∃b.Val(r, 2, b) if it is known
that r is a Recell. Thus, casting to the two-argument representation predicate
that would be necessary for calling {∃v.Val(c, v)} proxySet(c, x) {Val(c, x)} will
lose any information about the backup field.

The logic of Parkinson and Bierman was extended by van Staden and Calcagno
[19] to handle multiple inheritance, abstract classes and controlled leaking of
facts about the abstract representation of either a single class or a class hier-
archy. Using the latter feature, we observe that their logic can also be used to
reason about the example in Section 2, by using parameters g and s to give a
precise specification of proxySet. Instead of being functions, g and s would be
abstract predicate families whose first argument would be an object reference
used only for selecting the correct member of the APF.

Compared to the logics based on abstract predicate families, our logic allows
families of not just predicates but also types, functions, class names or any other
type that can be quantified over in Coq. This gives us strong typing of logical
variables, and all this works without building it into the logic and requiring that
quantifications and proofs follow the shape of the inheritance tree.

6 Conclusion and Future Work

We have presented a Coq implementation of a generic framework for higher-order
separation logic. In this framework, instantiated with a simple object-oriented
language, we have shown how HOSL can be used to reason about interfaces and
interface inheritance.

Future work includes developing better support for automation via better
use of tactics. Our Coq proofs of example programs are cluttered with manual
reordering of the context because we do not yet have tactics to automate this. We
also plan to integrate the current tool with an Eclipse front-end that is currently
being researched within our project [10]. Moreover, we plan to use the tool for
formal verification of interesting data structures from the C5 collection library.

Although it is not necessary for the code we mostly want to verify, proper
support for class-to-class inheritance in both the logic and the design pattern
would enable more direct comparison with related work. It would also make our
Java subset more similar to actual Java.
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Fictional Separation Logic
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Abstract. Separation logic formalizes the idea of local reasoning for
heap-manipulating programs via the frame rule and the separating con-
junction P ∗ Q, which describes states that can be split into separate
parts, with one satisfying P and the other satisfying Q. In standard sep-
aration logic, separation means physical separation. In this paper, we
introduce fictional separation logic, which includes more general forms of
fictional separating conjunctions P ∗ Q, where ∗ does not require phys-
ical separation, but may also be used in situations where the memory
resources described by P and Q overlap. We demonstrate, via a range
of examples, how fictional separation logic can be used to reason locally
and modularly about mutable abstract data types, possibly implemented
using sophisticated sharing. Fictional separation logic is defined on top of
standard separation logic, and both the meta-theory and the application
of the logic is much simpler than earlier related approaches.

Keywords: Separation Logic, Local Reasoning, Modularity.

1 Introduction

Separation logic is a kind of Hoare logic for local reasoning about programs with
shared mutable state. Locality is achieved by use of the ∗ connective and the
frame rule:

{P} C {Q}
{P ∗R} C {Q ∗R}

Recall that in standard separation logic, P ∗ R is satisfied by a heap if it can
be split into two separate (disjoint) parts satisfying P and R respectively. The
frame rule expresses that if command C is well-specified with precondition P
and postcondition Q, then C will preserve any disjoint invariant R, intuitively
(and formally in standard models) because of physical heap separation.

In many situations, however, physical separation is too strong a requirement
– we would like to be able to reason locally using ∗-connectives and frame rules in
situations where we do not have physical separation, but where we do have some
form of logical or fictional separation1. The key idea is that fictional separation
should allow us to reason separately about updates to shared resources, as long
as the updates follow some kind of discipline to guarantee that updates to one

1 The term “fictional separation” is derived from the phrase “fiction of disjointness”,
which, to the best of our knowledge, was introduced by Philippa Gardner [8].
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side of the ∗ do not affect the truth of the other side. Permission accounting
models [5, 4, 10] provide a familiar simple instance of this idea: they allow us to
reason separately about shared heaps as long as we do not update but only read
those heaps. In recent work on separation logic for concurrency [7, 11] and for
abstraction [8, 9], it is possible to describe more elaborate patterns of sharing.
We return to this when we discuss related work in Section 7.

In this paper we introduce fictional separation logic and demonstrate, via
examples, how the logic can be used to reason locally and modularly about
mutable abstract data types, possibly implemented using sophisticated sharing.

Before turning to the technical presentation, we consider a simple example.

Example: Bit Pair. Consider a small library for manipulating pointers to bit
pairs. It has a constructor, destructor and some accessors that conform to the
following specification in standard higher-order separation logic [2]:

∃B1, B2 : loc × bool → P(heap).

{emp} bp new() {B1(ret, false) ∗B2(ret, false)} ∧
{B1(p, ) ∗B2(p, )} bp free(p) {emp} ∧
∀i ∈ {1, 2}. (∀b. {Bi(p, b)} bp geti(p) {Bi(p, b) ∧ ret = b}) ∧

{Bi(p, )} bp seti(p, b) {Bi(p, b)}.

Note the use of existential quantification over representation predicates B1 and
B2; they correspond to what Parkinson and Bierman call abstract predicates [18].
The special variable ret in postconditions denotes the return value. As usual, the
underscore is used for an existentially-quantified variable.

Implementing this näıvely and verifying the implementation is straightfor-
ward in standard separation logic. Simply let the constructor allocate two con-
secutive heap cells and let the accessors dereference either their p parameter or
p + 1. For the verification, instantiate Bi(p, b) to (p+ (i− 1)) 7→ b.

But this implementation uses at least twice as much heap space as necessary.
The least we could do is to allocate only one (integer) heap cell and store the pair
of bits in its least significant bits. A possible implementation is the following,
where / denotes integer division, and % denotes modulo:

bp new() { p := alloc 1; [p] := 0; return p }
bp free(p) { free p }
bp get1(p) { x := [p]; return x % 2 }
bp get2(p) { x := [p]; return x / 2 }
bp set1(p,b) { x := [p]; [p] := b + x/2∗2 }
bp set2(p,b) { x := [p]; [p] := 2∗b + x%2 }

The original specification is unfortunately unprovable for this implementa-
tion, even though the two implementations have completely identical behaviour
when observed by a client that cannot inspect their internal memory.

The problem is that the abstract module specification is not sufficiently ab-
stract since it requires that the constructor creates two heap chunks that are
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physically disjoint. In other words, the abstract module specification reveals
patterns of sharing or, as is the case here, lack of sharing, that really ought to be
internal to the module implementation. Moving to a heap model with bit-level
separation will not solve the essence of this problem. Indeed, a third implemen-
tation could store the two bits in an integer that is divisible by 3 when B1 is true
and divisible by 5 when B2 is true. In this case, the fictional separation comes
from arithmetic properties of the integers.

In fictional separation logic, we existentially quantify not only over represen-
tation predicates B1 and B2, but also over the choice of separation algebra, Σ,
and an interpretation map I (explained below). The abstract module specifica-
tion then looks like this:

∃Σ : sepalg . ∃I : Σ % heap. ∃B1, B2 : loc × bool → P(Σ).

I. {emp} bp new() {B1(ret, false) ∗B2(ret, false)} ∧
I. {B1(p, ) ∗B2(p, )} bp free(p) {emp} ∧
∀i ∈ {1, 2}. (∀b. I. {Bi(p, b)} bp geti(p) {Bi(p, b) ∧ ret = b}) ∧

I. {Bi(p, )} bp seti(p, b) {Bi(p, b)}.

The intention is that the interpretation map I should explain how elements of
the separation algebra Σ are represented by predicates on physical heaps.

Note that the Hoare triples are now prefixed by I – we refer to such a predi-
cate I. {P} C {Q} as an indirect Hoare triple. The intention is that I records (1)
which separation algebra P and Q should be interpreted over, and (2) how P and
Q are translated into physical heap predicates, such that the triple meaningfully
corresponds to a suitably translated triple in standard separation logic.

This module specification does not reveal information about sharing or lack
of sharing, because Σ and I are abstract, i.e., existentially quantified. Client
code can now be verified relative to this abstract module specification and since,
as we will show, fictional separation logic supports the standard proof rules (and
some additional rules), the verification of client code is as easy as it is in standard
separation logic. We return to this example in Section 3.2 and show how both
implementations of bit pairs satisfy the above abstract specification. We will
consider an example of client code verification in Section 4.1.

Outline. The remainder of this paper is organized as follows. We first present
some formal preliminaries in Section 2 and then go on to present four sections
on fictional separation logic. In each of these sections, we first describe some
theory and then present examples that demonstrate how to use the theory in
program verification. Basic fictional separation logic and the indirect triple are
defined in Section 3. In Section 4 we define separating products of interpretations,
which allow clients to use several modules at the same time, and in Section 5 we
define a notion of indirect entailment and show how to use it to define fractional
permissions within fictional separation logic. We discuss how to stack several
levels of abstraction in Section 6, and we conclude and discuss related work in
Section 7. To focus on the core ideas, we present fictional separation logic for
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a simple sequential imperative programming language with procedures, but it
should be clear that the ideas are applicable to richer programming languages.

Proofs and further examples can be found in the online appendix [14].

2 Formal Preliminaries

2.1 Abstract Assertion Logic

The meaning of separation logic assertions is often parametrized on a separation
algebra (SA) [6], which is an abstraction of the heap model. There are several
competing definitions of separation algebra in the literature [6, 10, 12]; we use
the one from [12]:2

Definition 1. A separation algebra is a partial commutative monoid (Σ, ◦, 0).
We write σ

.
= σ1 ◦ σ2 when the σ1 ◦ σ2 is defined and has value σ.

Given a separation algebra (Σ, ◦, 0), the powerset P(Σ) forms a complete
boolean BI algebra, i.e., a model of the assertion language of classical separation
logic, where the connectives are defined in the standard way [6]:

> , Σ ⊥ , ∅
P ∧Q , P ∩Q P ∨Q , P ∪Q

∀x : A. P (x) ,
⋂

x:A

P (x) ∃x : A. P (x) ,
⋃

x:A

P (x)

P ⇒ Q , {σ | σ ∈ P ⇒ σ ∈ Q} emp , {0}
P ∗Q , {σ | ∃σ1, σ2. σ .

= σ1 ◦ σ2 ∧ σ1 ∈ P ∧ σ2 ∈ Q}
P −∗ Q , {σ2 | ∀σ1. ∀σ .

= σ1 ◦ σ2. σ1 ∈ P ⇒ σ ∈ Q}

As usual, entailment is defined as P ` Q , P ⊆ Q. We refer to the elements of
P(Σ) as (semantic) assertions.

2.2 Programming Language

The logic we will introduce in the next section is mostly independent of the
underlying programming language, but we will fix a particular language here
for clarity. It is a simple imperative language in the style of [20], extended with
simple procedures:

C ::= x := e | [e] := e | x := [e] | x := alloc e | free e
| C;C | if e then C else C | while e do C | call x := f(ē)

2 The original definition of SA [6] also required cancellativity : that if σ′ .= σ ◦ σ1 and
σ′ .

= σ ◦ σ2 then σ1 = σ2. This is too restrictive for our purposes, so we do not
include it in the general definition of a SA.
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The commands are, respectively, assignment, heap write, heap read, allocation,
deallocation, sequencing, conditional, loop and function call. The argument to
alloc specifies how many consecutive heap locations should be allocated.

There is no module system at the language level. When we talk about a
module in this paper, it simply refers to a collection of functions.

The operational semantics of the language is defined in a standard way, using
the following memory model:

C : cmd (see above)

x, y : var , string

f : func name , string

l : loc , N

program , func name
fin
⇀ var∗ × cmd × expr

v : val , loc ] {null} ] Z ] {true, false}
s : stack , var → val

e : expr , stack → val

h : heap , loc
fin
⇀ val

Verification always takes place in an implicit global context of type program
that maps each function name to a parameter list, function body and return
expression. The only type of syntactic entities in this paper is cmd . Assertions,
specifications, inference rules, and even programming language expressions, are
semantic. If desired, a syntactic system could be built on top of this, but it would
serve no purpose in this paper.

As usual, heap is a separation algebra with composition being the union of
disjoint maps and the identity being the empty map. In addition to the con-
nectives from Section 2.1, the separation algebra of heaps also has the points-to
assertion: l 7→ v , {[l 7→ v]}. We make this more precise in Section 2.4.

2.3 Specification Logic

A specification S : spec is a logical proposition about the program under consid-
eration. The specification logic has the connectives (>,⊥,∧,∨,∀,∃,⇒) as oper-
ators on spec and entailment (`) as a relation on spec. These interact according
to the standard rules of intuitionistic logic.

We assume that there is a definition of the Hoare triple {P} C {Q} : spec.
Intuitively, if S ` {P} C {Q}, then under the assumptions of S, if the command
C runs in a state satisfying P , it will not fault, and if it terminates, the resulting
state satisfies Q. The Hoare triple is assumed to satisfy the standard structural
and command-specific rules of separation logic [20].

The definition of spec and the Hoare triple, as well as the proofs that they
satisfy the rules of separation logic, are standard and not important here. See,
e.g., [1] for a definition of spec that allows for (mutually) recursive procedures
and is formalized in Coq.

The assertions P,Q used in the Hoare triple are of type asn(heap), where
asn(Σ) , stack → P(Σ). Connectives and rules for P(Σ) can be lifted pointwise
to asn(Σ), so we will conflate the two in the following.
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2.4 Constructing Separation Algebras

In this subsection we record some simple ways of constructing separation alge-
bras, which will be useful in the following.

Given a set A and a SA (Σ, ◦, 0), we write A fin→ Σ for the set of total maps
f : A → Σ for which only a finite number of values a : A have f(a) 6= 0. That
is, f has finite support. The set A fin→ Σ is itself a SA with composition being
pointwise and only defined when the composition in Σ is defined at every point.

We let [a 7→ σ] be the map in A fin→ Σ which maps a to σ and every other
element to 0. Observe that [a 7→ 0] is the constant 0 map.

For f : A fin→ Σ, define supp(f) = {a | f(a) 6= 0}.
A permission algebra (PA) [6] is a partial commutative semigroup; i.e., it is

like a SA but may not have a unit element. The product of two PAs (SAs) is
also a PA (SA); composition is pointwise, and it is defined only when defined on
both components. Any set A can be seen as the empty PA (A∅) by letting the
composition be undefined for all operands. Moreover, any set A can be seen as
the equality PA (A=) by letting the composition have x ◦ x .

= x for all x and
making it undefined for non-equal operands. Finally, any PA Π can be made
into a SA Π⊥ by adding a unit element.

In this terminology, the SA of heaps is heap = loc fin→ val∅⊥.

3 Fictional Separation Logic

The basic idea of fictional separation logic is that assertions are not just expressed
in a single separation algebra, chosen in advance to match the programming
language, but instead each module may define its own domain-specific SA. Each
such SA is interpreted into another SA and eventually to the SA of heaps. Given
separation algebras (Σ, ◦Σ , 0Σ) and (Σ′, ◦Σ′ , 0Σ′), an interpretation I is of type

Σ % Σ′ , {I : Σ → P(Σ′) | I(0Σ) = {0Σ′}}.

The side condition is not strictly necessary but will ease presentation later.3

The logic revolves around the indirect triple, defined as

I. {P} C {Q} , ∀φ. {∃σ ∈ P. I(σ ◦ φ)} C {∃σ ∈ Q. I(σ ◦ φ)}.

Here I is an interpretation map of type Σ % heap, and P,Q : asn(Σ), for the
same SA Σ. The triple and the all-quantifier on the right-hand side are the ones
from the standard specification logic (Section 2.3).

As mentioned in Section 2.3, we implicitly lift operators and constants from
P(Σ) into asn(Σ). In the definition above, the (∈) operator has been lifted in
this way for brevity. Following usual practice, there is also an implicit assump-
tion that the partial composition is well-defined. Written out in full detail, the
precondition on the right hand side above is the following element of asn(heap):

λs : stack . {h | ∃σ ∈ P (s). ∃σ′ .= σ ◦ φ. h ∈ I(σ′)}.
3 It simplifies the rule CreateL from Figure 1.
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The postcondition is similar, only with Q instead of P .
The quantification over all possible abstract frames φ bakes the frame rule

into the indirect triple definition, much as in [3], except that here the frame is
in a more abstract SA.

The standard specification logic structural rules of Consequence, Exists
and Frame hold for the indirect triple. For brevity we just show the frame rule:

modifies(C) ∩ fv(R) = ∅ S ` I. {P} C {Q}
S ` I. {P ∗R} C {Q ∗R} Frame

Here, modifies(C) is the set of program variables possibly assigned to by C [20].
The usual rules for control flow commands (if, while, call and (;)) also hold.
Proofs and a discussion of the conjunction rule are in the online appendix [14].

The unit interpretation on Σ is simply 1Σ , λσ : Σ. {σ}; it is used to relate
the standard separation logic triple to the indirect triple, as expressed by the
following rule:4

S ` 1heap . {P} C {Q}
S ` {P} C {Q} Basic

We typically drop the subscript on 1Σ since it can be inferred from the context.

3.1 Proof patterns

In this subsection we include a couple of rules and lemmas that are often useful
for reasoning about examples in fictional separation logic.

In practice, pre- and postconditions are often singletons, possibly conjoined
with a pure assertion, i.e., one that either contains every σ or no σ. The following
rule relates that special case to standard separation logic. The validity of this
rule follows easily from the definition of the indirect triple.

p, q pure S ` ∀φ. {I(σ ◦ φ) ∧ p} C {I(σ′ ◦ φ) ∧ q}
S ` I. {{σ} ∧ p} C {{σ′} ∧ q} Enter1

The name of this rule, like all other rules in this paper, suggests reading it from
the bottom up; i.e., given a proof obligation matching its conclusion, “enter” the
abstract scope by exchanging the conclusion for its premise.

We will see in examples that interpretation functions often follow a particular
pattern. The following lemma records useful facts about this pattern. It uses the
iterated separating conjunction [20] operator (∀∗), defined as

∀∗ a ∈ {a1, . . . , an}. P (a) , P (a1) ∗ . . . ∗ P (an).

Lemma 1. If I : (A fin→ Σ) % heap with I(f) = ∀∗ a ∈ supp(f). P (a, f(a)), then

a. I(f) ∗ I(g) a` I(f ◦ g) if supp(f) ∩ supp(g) = ∅.
b. I(f) ∗ I(g) ` I(f ◦ g) if ∀a. (P (a, ) ∗ P (a, ) ` ⊥).
c. If p, q are pure, then the following rule is valid.

S ` ∀φ. {I([a 7→ σ◦φ]) ∧ p} C {I([a 7→ σ′◦φ]) ∧ q}
S ` I. {{[a 7→ σ]} ∧ p} C {{[a 7→ σ′]} ∧ q}

4 Double lines mean that the rule can be used both from top to bottom and vice-versa.
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3.2 Example: Bit Pair

We now return to the example of bit pairs from Section 1 and explain how to
prove that the implementation with sharing meets the abstract module spec-
ification. (It is obvious how the näıve implementation meets the specification:
choose I to be 1heap and apply Basic.)

Choose the witnesses of the existentials as follows (we convert freely between
bool and {0, 1}).

Σ = loc fin→ ({1, 2} fin→ bool∅⊥)

I(f) = ∀∗ p ∈ supp(f). supp(f(p)) = {1, 2} ∧ p 7→ (f(p)(1) + 2 · f(p)(2))

Bi(p, b) = {[p 7→ [i 7→ b]]}

Composition and unit in Σ follows from the constructions in Section 2.4. This
resembles the SA used for object-oriented languages, where each object may
have several fields.

The intuition behind the choice of I is that by requiring the support at each
point to be the full set, i.e., {1, 2}, we can control what we expect to find in
the frame φ. For a function such as bp get1, this means that since B1(p, b) is
assumed in the precondition, we are sure to find B2(p, b′) in the frame, for some
b′. Showing that the frame is preserved then amounts to showing that the frame
also contains B2(p, b′) after executing the function body – and showing that any
other p′ 6= p mentioned in the frame is unaffected, but we will see below that
Lemma 1 on pointwise interpretation functions makes that easy.

We now have to show that the implementation of each function matches its
specification with this choice of witnesses for the existentials. This is straightfor-
ward, because every function in this example has a specification that matches a
combination of Enter1 and Lemma 1. These rules reduce the proof obligations
to statements in standard separation logic.

First note that the following saturation lemma holds for the interpretation
map for bit pairs:

I([ 7→ [i 7→ b]◦φ]) ` ∃b′. φ = [3−i 7→ b′].

We present here the proof of bp get1. Let C = (x := [p]), i.e., the body of
bp get1.

(trivial)∀b2. {p 7→ (b+ 2 · b2)} C {p 7→ (b+ 2 · b2) ∧ x%2 = b}
(definition)∀b2. {I([p 7→ [1 7→b, 2 7→b2]])} C {I([p 7→ [17→b, 2 7→b2]]) ∧ x%2 = b}
Saturation∀φ. {I([p 7→ [1 7→b]◦φ])} C {I([p 7→ [1 7→b]◦φ]) ∧ x%2 = b}

Lemma 1c
I. {{[p7→[1 7→b]]}} C {{[p 7→[1 7→b]]} ∧ x%2 = b}

(definition)
I. {B1(p, b)} C {B1(p, b) ∧ x%2 = b}

Notice that the overhead of showing that the abstract specification is met is
fairly small and straightforward.
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3.3 Example: Monotonic Counter

A monotonic counter is an integer stored in the heap with operations for reading
it and incrementing it but not for decrementing it. The implementation could
look like this:

mc new() { c := alloc 1; [c] := 0; return c }
mc read(c) { x := [c]; return x }
mc inc(c) { x := [c]; [c] := x+1 }

Reasoning about monotonic counters was posed as a verification challenge by
Pilkiewicz and Pottier [19]. They discussed the challenge in a type-and-capability
system, so the presentation is somewhat different than for separation logic, but
the idea is the same. The counter should have a representation predicate MC (c, i)
that can be freely duplicated; i.e., MC (c, i) ` MC (c, i) ∗MC (c, i). It should be
possible to frame out one of the copies while the other copy is used to call the
increment function; when the first copy is later framed back in, it can soundly
be used to call the read function since its postcondition only guarantees that the
returned value is at least the value from the representation predicate.

The specification in fictional separation logic looks like this:

∃Σ : sepalg . ∃I : Σ % heap. ∃MC : loc × Z→ P(Σ).

(∀c, j. ∀i ≤ j. (MC (c, j) a` MC (c, j) ∗MC (c, i))) ∧
I. {emp} mc new() {MC (ret, 0)} ∧
(∀i. I. {MC (c, i)} mc read(c) {MC (c, i) ∧ ret ≥ i}) ∧
(∀i. I. {MC (c, i)} mc inc(c) {MC (c, i+ 1)}).

The fact about MC has several corollaries that are useful for clients:

MC (c, i) a` MC (c, i) ∗MC (c, i)
i ≤ j ∧MC (c, j) ` MC (c, i) ∗ >

MC (c, i) ∗MC (c, j) ` MC (c,max (i, j))

Compared to the solution by Pilkiewicz and Pottier, this solution has several
advantages. Our solution can be specified and verified without changing the
implementation to account for limitations in the verification system [19, end of
Sect. 4]. Moreover, it can be verified in the simple system of fictional separation
logic, whereas there exists no soundness proof yet for the very complicated type
system used by Pilkiewicz and Pottier.

To verify our specification against the implementation shown above, choose
the existentials as follows:

Σ = loc fin→ Z⊥ where composition in Z is max

I(f) = ∀∗ c ∈ supp(f). ∃j ≥ f(c). c 7→ j

MC (c, i) = {[c 7→ i]}

The property about MC is straightforward to verify in the assertion logic. Veri-
fication of the three functions is shown in the online appendix [14].
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S ` I ∗ J. {P L} C {QL}
S ` I. {P} C {Q} CreateL

S ` I. {P} C {Q}
S ` I ∗ J. {P L} C {QL} ForgetL

S ` I ∗ J. {P L} C {Q×>}
S ` I ∗ 1. {P L} C {Q×>} LeakL

p pure

(p ∧ P )×Q a` p ∧ (P ×Q)
Prod-Pure

Fig. 1. Selected inference rules for separating products, using notation P L , P×emp

There are some limitations in the specification. There can be no function to
deallocate a counter because its representation predicate can be freely shared.
The absence of deallocation means that this specification is more suited for
a garbage-collected language. Also, the specification does not guarantee that
consecutive calls to mc read will return the same value; it would be valid to
implement mc read such that it has the side effect of incrementing the counter.
These limitations are also present in the specification by Pilkiewicz and Pottier.

4 Clients and Separating Products

To allow clients of multiple libraries to know about more than one separation
algebra and interpretation function, we introduce separating products of inter-
pretations.

Given interpretations I1 : Σ1 % Σ and I2 : Σ2 % Σ, their separating product
I1 ∗ I2 has type Σ1×Σ2 % Σ and is defined as

I1 ∗ I2 , λ(σ1, σ2). I1(σ1) ∗ I2(σ2).

Figure 1 shows a collection of inference rules about separating products. At
the bottom of a proof tree, just above application of Basic, a client should
use CreateL for each module that will be used. In that rule, P L , P × emp,
where (×) is simply the Cartesian product lifted into asn. To write that out,
P1 × P2 , λs. {(σ1, σ2) | σ1 ∈ P1(s) ∧ σ2 ∈ P2(s)}.

The CreateL rule requires the command C to clean up the state abstracted
by J completely; i.e., that state must satisfy emp in the postcondition. When
this is not possible, for example in the Monotonic Counters example, we can
instead use the LeakL rule.

Before calling a library function, a client will, as usual, have to frame out
irrelevant facts. There, it can be useful to know that (P ∗ Q)L a` P L ∗ QL and
that P × Q a` P L ∗ QR, where PR , emp × P . After applying the frame rule,
the client can then ignore the irrelevant separation algebras using the ForgetL
rule, which is just the CreateL rule inverted.

Pure assertions can move in and out of products as described by the Prod-
Pure rule. There are of course rules CreateR, ForgetR and LeakR sym-
metric to the ones in Figure 1, and further structural rules can be defined to
handle commutativity and associativity with separating products.

62



4.1 Example: Client of Two Modules

Assume we have a client program C that uses both the bit pair and the mono-
tonic counter modules, and we want to show that it has precondition emp and
postcondition >. We suggest > in the postcondition because there is no deallo-
cation function for monotonic counters as mentioned earlier.

The standard pattern for this is to assume the module specifications at the
bottom of the tree and then move from the standard triple to the appropriate
indirect triple by applying Basic once and then Create or Leak for each
module, reading from the bottom up. Abbreviate the bit pair and monotonic
counter specifications, minus the existentials, as Sbp and Smc respectively. The
bottom of the proof for C then looks like this.

Sbp ∧ Smc ` Ibp ∗ Imc. {emp × emp} C {emp ×>}
LeakL

Sbp ∧ Smc ` Ibp ∗ 1. {emp × emp} C {emp ×>}
CreateR

Sbp ∧ Smc ` 1. {emp} C {>}
Basic

Sbp ∧ Smc ` {emp} C {>}
∃L

(∃Σ, Ibp, B1, B2. Sbp) ∧ (∃Σ, Imc,MC. Smc) ` {emp} C {>}

The bottom proof step applies the standard existential-left rule from sequent
calculus twice.

If C uses the heap directly, not just through the two modules, it should apply
Create once more to get the interpretation Ibp ∗ Imc ∗ 1 on the indirect triple.

Further up in the proof tree, there will eventually be a point where it is
necessary to call a function belonging to one of the modules, e.g., the bit pairs.
The following pattern is used to ignore irrelevant modules during the call.

S ` Ibp. {P} call f {Q}
ForgetL

S ` Ibp ∗ Imc. {P L} call f {QL}
Frame

S ` Ibp ∗ Imc. {P L ∗R1
L ∗R2

R} call f {QL ∗R1
L ∗R2

R}
Consequence

S ` Ibp ∗ Imc. {(P ∗R1)×R2} call f {(Q ∗R1)×R2}

Note that this kind of reasoning will not be so explicit in practice; a simple tool
can easily elide these steps.

In this section we considered a generic client; see the online appendix [14] for
a concrete example client using bit pairs and monotonic counters.

4.2 Example: Wrapper

This example demonstrates how a module can extend the abstraction of another
module by using a separating product. We will see that this example gives a com-
pelling argument against solving the fiction-of-disjointness problem by letting the
client carry around an explicit but opaque frame as done in [16, Chapter 5].
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Consider first the following specification of a collection data structure.

SColl(Σ : sepalg , I : Σ % heap,Coll : loc × Pfin(val)→ P(Σ)) , ∀c, V.
(Coll(c, ) ∗ Coll(c, ) ` ⊥) ∧
I. {emp} coll new() {Coll(ret, ∅)} ∧
I. {Coll(c, V )} coll free(c) {emp} ∧
I. {Coll(c, V )} coll clone(c) {Coll(c, V ) ∗ Coll(ret, V )} ∧
I. {Coll(c, V )} coll contains(c, v) {Coll(c, V ) ∧ ret = (v ∈ V )} ∧
I. {Coll(c, V )} coll add(c, v) {Coll(c, V ∪ {v})} ∧
I. {Coll(c, V )} coll remove(c, v) {Coll(c, V \ {v})}.

This is a standard specification of a finite collection, except for the coll clone
function. This function could be implemented by simply copying the contents of
the collection to a new data structure; in standard separation logic, that would
be the only possible implementation because of the (∗) in the postcondition.

In fictional separation logic, it might also be implemented by using copy
on write – the reference-counting technique in which the contents are initially
shared between two collections and only copied when the need arises because
one of them is modified [17]. The purpose of including coll clone here is to have
a reason why this library should be specified with fictional separation logic.

Consider now a wrapper module of indirect references to collections. The
implementation could be this:

wcoll new(c) { w := alloc 1; [w] := c; return w }
wcoll contains(w,v) { c := [w]; return coll contains(c,v) } . . .

Functions wcoll add, wcoll remove and wcoll free would be implemented analo-
gously to wcoll contains, forwarding the call. A more useful wrapper module
would, of course, add some functionality, such as caching the last query to
wcoll contains or counting the number of calls to wcoll add, but the essence re-
mains the same.

We can give the following specification to this code.

∀Σ, I,Coll . SColl(Σ, I,Coll)⇒
∃WColl : loc × Pfin(val)→ P(heap×Σ). ∀V.
1 ∗ I. {Coll(c, V )R} wcoll new(c) {WColl(ret, V )} ∧
1 ∗ I. {WColl(w, V )} wcoll contains(w, v) {WColl(w, V ) ∧ ret = (v ∈ V )} ∧ ...

Observe that this is an example of one specification depending on another, by
being universal in the parameters of the SColl specification from above. (See [1]
for more general cases of this design pattern, in standard higher-order separation
logic.) For the example implementation above, the proof of the specification
should instantiate the existential as WColl(w, V ) = ∃c. w 7→ c × Coll(c, V ). As
a side remark, this specification could be made more abstract, so that it would
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reveal less implementation detail, by hiding the use of the 1-interpretation behind
an existential.

The specification of the constructor, wcoll new, is an example of ownership
transfer: ownership of memory described by an abstract predicate (Coll(c, V ))
is transferred from the caller to the module. The specification intentionally does
not reveal whether the transfer happened simply by storing a pointer, as in our
example implementation, or whether the constructor allocated a new collection
(or another container data structure), manually copied the contents of the given
collection to that, and then freed the given collection.

For comparison, to mimic this in standard separation logic, one could take
inspiration from Krishnaswami’s design pattern [16, Chapter 5] and let the rep-
resentation predicate of the collection module describe all the collections that
may share data; i.e., H : Pfin(loc × Pfin(val))→ P(heap). The constructor spec-
ification would then be along the lines of the following, where ] denotes union
of sets of tuples with disjoint first components, and Coll ′(c, V ) , {(c, V )}.

{H (Coll ′(c, V ) ] φ)} wcoll new(c) {∃σ. H (σ ] φ) ∗WColl ′(ret, σ, V )}.

This specification allows the same implementation freedom as the fictional sep-
aration logic version does, and the caller is guaranteed that the abstract frame
φ is preserved. But it is a completely undesirable specification in practice be-
cause the WColl ′ predicate can never be detached from the H predicate that it
may share data with. This means that all the accessor functions must have both
WColl ′ and H in their pre- and postconditions. Even worse, clients need to keep
track of the opaque σ that links the two together.

5 Indirect Entailment

There is no restriction that a physical heap can only be in the image of a single
abstract σ. Therefore we can sometimes change abstract pre- and postconditions
in a more powerful way than what the rule of consequence allows; we present an
application of this idea in the next subsection. First, we define indirect entail-
ment :

P |=I Q , ∀φ.
(
(∃σ ∈ P. I(σ ◦ φ)) ` (∃σ ∈ Q. I(σ ◦ φ))

)
.

We can now state the indirect rule of consequence:

P |=I P
′ S ` I. {P ′} C {Q′} Q′ |=I Q

S ` I. {P} C {Q} ROC-Indirect

Its correctness is immediate from the definitions.
The definition of indirect entailment is quite similar to the indirect triple. In

fact, if I : Σ % heap for some Σ, then P |=I Q if and only if ` I. {P} skip {Q}.
For any I, the relation (|=I) is reflexive and transitive and is a superrelation

of (`). Judgements P |=I Q can also be studied as a kind of degenerate assertion
logic; in that case, the standard natural-deduction introduction and elimination
rules for (>,⊥,∨,∃) hold, and so do (⇒)-introduction and (∧,∀)-elimination. It
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is also possible to reason locally on both sides of a separating conjunction, and
the existential-left rule holds; i.e.,

P |=I P
′ Q |=I Q

′

P ∗Q |=I P ′ ∗Q′
∀x. (P (x) |=I Q)

∃x. P (x) |=I Q

We discuss more rules for (|=I) in the online appendix [14].

5.1 Example: Fractional Permissions

Permission accounting [5, 4, 10] is a solution to simple sharing problems where
just read-only data is shared. The points-to predicate is generalized to carry a
permission, so l

z7→ v denotes a z-permission to access heap location l. If z is a
read-only permission, then there are no write permissions to l available to others,
and therefore its value stays v. If z is a write permission, then there are no other
read or write permissions for l available to others.

A write permission can be split across the ∗ into several read-only permis-
sions. If it is known that all read-only permissions have been accounted for, then
they can be re-assembled into a write permission. Permissions are clearly useful
for sharing data read-only between threads in concurrent programs, but it also
has uses in a sequential setting [13, 15].

We will now show how fractional permissions, a particular permission ac-
counting scheme, can be encoded in fictional separation logic. This allows us to
use fractional permissions where we need it, without having fractional permis-
sions in the base logic! A permission z is a rational number satisfying 0 < z ≤ 1.
The write permission is 1, and all smaller numbers are read-only permissions. We
will define the assertion l

z7→ v such that the splitting and joining of permissions
can be described by the following inference rule.

Fractions
l
z17→ v1 ∗ l z27→ v2 a` v1 = v2 ∧ z1 + z2 ≤ 1 ∧ l 7 z1+z2−−−−→ v1

We first define the SA of heaps with fractional permissions as usual [4]:

Σfp , Ptr fin→ (Val= × Perm)⊥, where

Perm , {z : Q | 0 < z ≤ 1}

z1 u z2 ,
{
z1 + z2 if z1 + z2 ≤ 1

undefined otherwise

Since (Perm,u) is a permission algebra, Σfp is a separation algebra (see Sec-

tion 2.4). We define the fractional points-to predicate by l
z7→ v , {[l 7→ (v, z)]}

and can then easily verify the Fractions rule.
To make use of all this, we define an interpretation I fp : Σfp % heap. The idea

is the same as for the interpretation function in the bit pair example (Section 3.2):
assume we have the full knowledge (permission) for each described heap location.

I fp(f) , ∀∗ l ∈ supp(f). ∃v. f(l) = (v, 1) ∧ l 7→ v.

66



We can now prove a specification of the heap read command for fractional
permissions. For clarity, let us just consider the case where the variable name
being assigned to is fresh (formally we treat free variables as in [1]):

x /∈ fv(e, e′)

` I fp. {e z7→ e′} x := [e] {e z7→ e′ ∧ x = e′}
Let us sketch the proof of this rule. We first expand the definition of the fractional
points-to predicate in the conclusion:

` I fp. {{[e 7→ (e′, z)]}} x := [e] {{[e 7→ (e′, z)]} ∧ x = e′}.

By applying Lemma 1c, we can reduce this to the proof obligation

` ∀φ. {I fp([e 7→ (e′, z) ◦ φ])} x := [e] {I fp([e 7→ (e′, z) ◦ φ]) ∧ x = e′},

which is now a statement in standard separation logic that can be discharged
using a saturation lemma like in Section 3.2. Intuitively, I fp in the precondition
gives us the points-to predicate needed for applying the standard read rule. The
postcondition requires us to prove that I fp holds for the same parameter, which
is easy since the heap did not change.

We can also prove the write and allocation rules using the above approach,
but we will instead show how to use indirect entailment to get even simpler
proofs. The following indirect bi-entailment expresses that having the full per-
mission to a location (z = 1) is the same as having a standard points-to predicate
for it:

(l
17→ v)L =||=Ifp∗1 (l 7→ v)R

With this lemma, proved in the online appendix [14], the write and allocation
rules follow almost immediately from their standard separation logic versions.
For instance, the fractional write rule is derived as follows.

Basic, Write-std
` 1. {e 7→ } [e] := e′ {e 7→ e′}

ForgetR
` I fp ∗ 1. {(e 7→ )R} [e] := e′ {(e 7→ e′)R}

ROC-Indirect
` I fp ∗ 1. {(e 17→ )L} [e] := e′ {(e 17→ e′)L}

CreateL
` I fp. {e 17→ } [e] := e′ {e 17→ e′}

6 Stacking

Intuitively, fictional separation logic allows us to pretend we are working in a
high-level memory model Σ if we show how to interpret that high-level memory
model down to heap. It is then natural to investigate whether we can stack an
even higher-level memory model Σ′ on top of that construction and interpret Σ′

down to Σ. Of course, this should generalize to arbitrary levels of stacking.
In this section, we present a theory of stacking that allows this while in-

teracting well with the features introduced in previous sections and not being

67



a burden on the logic when not in use. It is important to stress that it is in
many cases possible for one module to depend on and extend the abstraction of
another module without using stacking; c.f. the wrapper example in Section 4.2.

The most basic way to combine two interpretations is to compose them as
relations. Given interpretations I : Σ1 % Σ2 and J : Σ2 % Σ3, their relational
composition (I ; J) has type Σ1 % Σ3 and is defined as

I ; J , λσ1. ∃σ′2 ∈ I(σ1). J(σ′2).

That is, σ3 ∈ (I ; J)(σ1) if and only if ∃σ′2 ∈ I(σ1). σ3 ∈ J(σ′2).
We can show the following rule for working with relational composition:

S ` ∀φ. J. {∃σ ∈ P. I(σ ◦ φ)} C {∃σ ∈ Q. I(σ ◦ φ)}
RelComp

S ` (I ; J). {P} C {Q}
Reading the rule from the bottom up, RelComp allows peeling off the top layer
of a multi-layered interpretation, making its frame explicit. This is desirable
when verifying an implementation that extends upon the J-interpretation using
I. Perhaps J is opaque at the point where this rule is applied.

Relational composition masks the J-interpretation to the outside; in partic-
ular, it masks the frame in Σ2 that goes into J , which means that the converse
of RelComp does not hold. In many situations, including the next example, we
want to give specifications that expose both the Σ1-algebra and the Σ2-algebra
in order to be useful to clients that do not have their data exclusively in Σ1. This
discussion motivates our definition of the stacking composition. Given interpre-
tations I : Σ1 % Σ2 and J : Σ2 % Σ3, their stacking I � J has type Σ1×Σ2 % Σ3

and is defined as
I � J , (I ∗ 1) ; J.

With this definition, we now get a generalization of RelComp in the form of
the following rule, which holds in both directions:

S ` ∀φ. J. {∃σ ∈ P1. I(σ ◦ φ) ∗ P2} C {∃σ ∈ Q1. I(σ ◦ φ) ∗Q2}
StackComp

S ` I � J. {P1×P2} C {Q1×Q2}
The special case of this rule where P2 = Q2 = emp is similar to RelComp.

The special case where P1 = Q1 = emp leads to a rule that is more like a stacking
version of Forget and Create (Section 4).

There is a generalization of the Enter1 rule to stacking:

S ` ∀φ. J. {I(σ ◦ φ) ∗ P} C {I(σ′ ◦ φ) ∗Q}
Enter1Stack

S ` I � J. {{σ} × P} C {{σ′} ×Q}
This rule is simply a special case of StackComp. Notice that (I � 1) = (I ∗ 1),
so these inference rules can also be applied to separating products in some cases.

A module may use stacking internally but hide that fact if the stacking does
not need to be visible to its clients. This can be achieved by collapsing the
stacking composition to a relational composition by the following rule:

S ` I � J. {P L} C {QL}
StackRel

S ` (I ; J). {P} C {Q}
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6.1 Example: Abstract Fractional Permissions

We saw the example of fractional permissions in Section 5.1, where the points-
to predicate was extended to carry a permission. With stacking, we can use
essentially the same construction to extend the Coll predicate from Section 4.2
to carry a permission. Just like the heap-read command could execute with any
partial permission, while heap write required full permission, we can prove that
coll clone and coll contains can execute with any partial permission, while the
other functions require full permission.

Formally, we can prove the validity of the following specification.

∀Σ, I,Coll . SColl(Σ, I,Coll)⇒
∃Σ′ : sepalg . ∃I ′ : Σ′ % Σ.
∃FColl : Perm × loc × Pfin(val)→ P(Σ′). ∀V, V ′, c, z, z′.
(FCollz(c, V ) ∗ FCollz

′
(c, V ′) a` V = V ′ ∧ z + z′ ≤ 1 ∧ FCollz+z

′
(c, V )) ∧

(FColl1(c, V )L =||=I′�I Coll(c, V )R) ∧
I ′ � I. {FCollz(c, V )L} coll contains(c, v) {FCollz(c, V )L ∧ ret = (v ∈ V )} ∧
I ′ � I. {FCollz(c, V )L} coll clone(c) {FCollz(c, V )L ∗ FColl1(ret, V )L}.

The elements of the specification are all the same as for the standard fractional
permissions in Section 5.1. It is written such that the stacking is revealed to
clients, allowing them to use the fractional and non-fractional collections together
and convert between them using the indirect bi-entailment in the specification.
There is thus no need for specifying fractional versions of the remaining functions
since the indirect bi-entailment allows reusing the original specifications.

Notice that we can define FColl and prove fractional versions of all the func-
tions without knowing their implementation or how Coll , I or Σ are defined.
In particular, the implementations of coll clone and coll contains are allowed to
modify the underlying heap, but they still appear read-only through the indirect
specification.

If it is not necessary for fractional and non-fractional collections to coexist
and share footprints from the perspective of clients, the StackRel rule could
be used to hide the stacking in this specification. Then the specification can
be made to look as simple as the original specification in Section 4.2 by hiding
(I ′ ; I) behind an existential.

We can verify the specification by choosing the existentials as follows:

Σ′ = loc fin→ (Pfin(val)= × Perm)⊥
I ′(f) = ∀∗ c ∈ supp(f). ∃V. f(c) = (V, 1) ∧ Coll(c, V )

FCollz(c, V ) = {[c 7→ (V, z)]}

This is very similar to the original fractional permissions example, and the
proofs are also similar.
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7 Discussion and Related Work

Simplicity has been a major goal for this theory, particularly in three places:
(1) clients of a module that uses fictional separation internally should be able
to reason with the same ease as in standard separation logic; (2) the overhead
in verifying an implementation with fictional separation should be minimal; and
(3) correctness of the meta-theory should be easy to prove. The three goals are
listed in order of importance since they represent tasks to be carried out by a
decreasing number of people.

We believe that the first simplicity goal has been achieved in most situations,
though clients of multiple modules with complex stacking patterns may benefit
from tool support for composing the interpretations. The second goal has been
achieved in the sense that it is easy to verify examples like those presented
in this paper and, moreover, the separation algebras needed can be assembled
from standard constructions. The third goal has been reached through judicious
choice of definitions, especially by defining the indirect triple in terms of the
standard triple – it has been possible to conduct all meta-theoretical proofs
without unfolding the definition of the standard triple [14]. Because we work
directly in the semantics of the logic, it should be natural to encode this theory
in the Coq proof assistant, extending our existing Coq formalization of separation
logic [1].

A major inspiration for fictional separation logic has been the design pat-
tern used by Krishnaswami [16, Chapter 5] for specifying data structures with
fictional disjointness in standard separation logic. The technique is to define a
per-module custom separation logic (not separation algebra) and let the client
manage the abstract frame, which is explicitly present in every function specifi-
cation. Fictional separation logic makes the essential part of this design pattern
formal, allowing the abstract frame to be managed implicitly by the indirect
triple and enabling a general and comprehensive theory on these custom separa-
tion logics, instead of scattering the theory across modules on an ad-hoc basis.
See also the discussion in Section 4.2. We ignore Krishnaswami’s concept of a
ramification operator since it would make the resulting logic too different from
separation logic.

The work on locality-breaking transformations (LBT) for context logic, a kind
of non-commutative separation logic, by Dinsdale-Young, Gardner and Wheel-
house [8, 9] can also be seen as a formalization of Krishnaswami’s design pattern,
though they were developed independently. LBT is in the field of program re-
finement, which means that not only are pre- and postconditions of a triple
transformed across abstraction layers, like in fictional separation logic, but the
command is also transformed. Despite that difference, the intuition and proof
obligations are similar to fictional separation logic: verifying a module implemen-
tation involves showing that all atomic operations preserve an abstract frame
from a per-module context algebra. Reasoning in LBT is fundamentally in two
stages, though: a client program and proof are always created at the high level
and are subsequently transformed to the low level outside the logic. In fictional
separation logic, moving between the levels is done within the logic itself, and the
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separation algebras are first-class entities in the logic. Hence, as we have seen, we
can take advantage of all the features in the specification logic, e.g., to hide the
definition of a separation algebra behind an existential quantifier. The soundness
proofs of the meta-theory in [9] are much more complicated than ours, despite
their much less expressive specification logic; it appears to be caused by their
proof-theoretic approach to soundness as opposed to our semantic approach.

In terms of what examples can be encoded, fictional separation logic is quite
close to the concurrent abstract predicates (CAP) framework [7, 11] restricted to
sequential programs. CAP has been developed for reasoning about concurrent
programs in which several threads may work on the same shared memory; when
restricting attention to sequential programs, CAP thus allows to specify and
reason about modules that are implemented using sharing. The CAP approach,
seen from our perspective, is to fix one particular separation algebra for all mod-
ules, which is sufficiently powerful to handle most cases of sharing. The algebra
is specialized to each module by giving a per-module protocol definition, with
access to the various stages in the protocol controlled by permission accounting.
These explicit protocols, describing what atomic modifications may be performed
on shared memory regions, give verification tasks a completely different flavour
and intuition compared to fictional separation logic. In a sequential setting, the
two systems are therefore very different solutions to the same problem. Concur-
rent abstract predicates is fundamentally rooted in a concurrent setting, though,
which complicates the proof system. In particular, program verification requires
showing stability of all intermediate pre- and postconditions in a proof.

Future work includes extending fictional separation logic to richer program-
ming languages. Our preliminary investigations suggest that it is straightforward
to extend the logic to a language with function pointers, by using the idea of
nested triples [21] to specify such pointers. In fictional separation logic we will,
of course, use indirect nested triples. To make it possible to call a function f
with a function argument that uses an interpretation stacked on top of f ’s own
interpretation, one can specify both f and its argument through a stacking of
interpretations.

We are also interested in extending fictional separation logic to a concurrent
language in order to find out whether it can retain its simplicity.
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A-1 Additional Lemmas

{σ ◦ σ′} a` {σ} ∗ {σ′} Homomorphism

The following definition will be used in this appendix for the sake of
brevity.

Definition A-1. Given I : Σ % Σ′ and φ : Σ, the function Iφ : P(Σ) →
P(Σ′) is a lifting of I to predicates. It is defined as Iφ(P ) , ∃σ ∈ P. I(σ◦φ).�

The definition above can be used to giver shorter definitions of indirect
triple and indirect entailment:

I. {P} C {Q} = ∀φ. {Iφ(P )} C {Iφ(Q)}
P |=I Q = ∀φ. (Iφ(P ) ` Iφ(Q))

These definitions are equivalent to the original ones in the main text. Notice
that h ∈ Iφ(P ) iff ∃σ ∈ P. h ∈ I(σ ◦ φ).

A-1.1 Specification Logic Rules

Lemma A-1. If e : expr and I : Σ % Σ′, then Iφ(P ∧ e) a` Iφ(P ) ∧ e.

Note first how to read the above lemma. We have e : expr = stack → val .
When such an expression appears in the place of an assertion in asn(Σ), it
should be read as being implicitly injected by the function

injΣ(e) , λs : stack . {σ : Σ | e(s) = true}.

This is standard in Hoare logics, but we are explicit about it here because
the e above appears injected into two different assertion logics: asn(Σ) on
the left and asn(Σ′) on the right.

Proof (of Lemma A-1).

Iφ(P ∧ e) a`
∃σ ∈ (P ∧ injΣ(e)). I(σ ◦ φ) a`
∃σ. σ ∈ P ∧ σ ∈ injΣ(e) ∧ I(σ ◦ φ) a`
∃σ. σ ∈ P ∧ e = true ∧ I(σ ◦ φ) a`
(∃σ. σ ∈ P ∧ I(σ ◦ φ)) ∧ e = true a`
(∃σ ∈ P. I(σ ◦ φ)) ∧ injΣ′(e) a`
Iφ(P ) ∧ e �

In the following proofs, we omit (S `) on each line.
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Proof of control flow commands.

I. {P ∧ e} C {P}
(definition)

∀φ. {Iφ(P ∧ e)} C {Iφ(P )}
Lemma A-1

∀φ. {Iφ(P ) ∧ e} C {Iφ(P )}
While-std

∀φ. {Iφ(P )} while e do C {Iφ(P ) ∧ ¬e}
Lemma A-1

∀φ. {Iφ(P )} while e do C {Iφ(P ∧ ¬e)}
(definition)

I. {P} while e do C {P ∧ ¬e}

Proofs of (if, call and (; )) have the same structure.

Proof of assign.

Assign-std
∀φ. {Iφ(Q)[e/x]} x := e {Iφ(Q)}

(substitution on lifting)
∀φ. {Iφ(Q[e/x])} x := e {Iφ(Q)}

(definition)
I. {Q[e/x]} x := e {Q}

Proof of the rule of consequence. This proof works simply by expand-
ing the definition of the indirect triple and appealing to the standard rule
of consequence:

P ` P ′
I. {P ′} C {Q′}

∀φ. {∃σ ∈ P ′. I(σ ◦ φ)} C {∃σ ∈ Q′. I(σ ◦ φ)} Q′ ` Q
∀φ. {∃σ ∈ P. I(σ ◦ φ)} C {∃σ ∈ Q. I(σ ◦ φ)}

I. {P} C {Q}

Proof of the existential rule.

∀x : A. I. {P (x)} C {Q}
(definition)

∀x : A. ∀φ. {Iφ(P (x))} C {Iφ(Q)}
∀φ. ∀x : A. {Iφ(P (x))} C {Iφ(Q)}

Exists-std
∀φ. {∃x : A. Iφ(P (x))} C {Iφ(Q)}

(definition)
∀φ. {∃x : A. ∃σ ∈ P (x). I(σ ◦ φ)} C {Iφ(Q)}
∀φ. {∃σ. ∃x : A. σ ∈ P (x) ∧ I(σ ◦ φ)} C {Iφ(Q)}

(def. of (∃) in asn)
∀φ. {∃σ. σ ∈ (∃x ∈ A. P (x)) ∧ I(σ ◦ φ)} C {Iφ(Q)}

(definition)
∀φ. {Iφ(∃x : A. P (x))} C {Iφ(Q)}

(definition)
I. {∃x : A. P (x)} C {Q}

This rule is often presented in a more symmetric-looking style, where the
conclusion has an existential in both the pre- and postcondition. The sym-
metric version of the rule can be derived from this one by the rule of conse-
quence.
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Proof of the frame rule.

mods(C) # fv(R)

∀σ2. mods(C) # fv(σ2 ∈ R)

I. {P} C {Q}
(definition)

∀φ. {Iφ(P )} C {Iφ(Q)}
(specialize)

∀φ′, σ2. {Iσ2◦φ
′
(P )} C {Iσ2◦φ′(Q)}

Frame-std
∀φ′, σ2. {σ2 ∈ R ∧ Iσ2◦φ

′
(P )} C {σ2 ∈ R ∧ Iσ2◦φ

′
(Q)}

(definition)

∀φ′, σ2.
{
σ2 ∈ R ∧ ∃σ1 ∈ P.
I(σ1 ◦ σ2 ◦ φ′)

}
C

{
σ2 ∈ R ∧ ∃σ1 ∈ Q.
I(σ1 ◦ σ2 ◦ φ′)

}

Exists-std

∀φ′.
{
∃σ2 ∈ R. ∃σ1 ∈ P.
I(σ1 ◦ σ2 ◦ φ′)

}
C

{
∃σ2 ∈ R. ∃σ1 ∈ Q.
I(σ1 ◦ σ2 ◦ φ′)

}

(definition)∀φ′. {∃σ ∈ (P ∗R). I(σ ◦ φ′)} C {∃σ ∈ (Q ∗R). I(σ ◦ φ′)}
(definition)

I. {P ∗R} C {Q ∗R}

Notice that in the place where we appeal to the standard frame rule, we
are framing out a pure fact conjoined with a non-pure fact. The frame rule
applies here because p ∧Q a` (p ∧ emp) ∗Q when p is pure.

Proof of Basic.

1. {P} C {Q}
(definition)

∀φ. {∃σ ∈ P. 1(σ ◦ φ)} C {∃σ ∈ Q. 1(σ ◦ φ)}
(definition)

∀φ. {∃σ ∈ P. {σ ◦ φ}} C {∃σ ∈ Q. {σ ◦ φ}}
Homomorphism∀φ. {∃σ ∈ P. {σ} ∗ {φ}} C {∃σ ∈ Q. {σ} ∗ {φ}}
?

{∃σ ∈ P. {σ}} C {∃σ ∈ Q. {σ}}
{P} C {Q}

The proof step labelled (?) uses the frame rule in the bottom-to-top direction
and specializes φ to 0 in the top-to-bottom direction.

A-1.2 Separating Products

S ` ∀φ. I ∗ 1. {P × J(σ ◦ φ)} C {Q× J(σ′ ◦ φ)}
S ` I ∗ J. {P × {σ}} C {Q× {σ′}} Product1

(P ∗Q)×R a` P L ∗ (Q×R) P ×Q =||=1Σ∗1Σ (P ∗Q)L

On assertions, × distributes over ∀ and ∃ (inhabited types only). Nothing
happens at >, but ⊥×R a` ⊥. Implication is (P ⇒ Q)×R ` P×R⇒ Q×R.
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A-1.3 Pointwise Interpretations

Proof of Lemma 1.

a. The side condition ensures that supp(f ◦ g) = supp(f) ] supp(g), so
the iterated separating conjunction can be split up in those two parts.

b. The side condition and the separating conjunction together entail that
the supports of f and g are disjoint, and then case (a) applies.

c. We will use the fact that for any f : X fin→ Σ, x : X and σ : Σ, we have
[x 7→ σ] ◦ f = [x 7→ σ ◦ f(x)] ◦ f [x 7→ 0], where f [x 7→ 0] denotes the
function that maps x to 0 and any other x′ to f(x′). Note that both
the composition in Σ and in X fin→ Σ are written as (◦). We derive the
lemma as follows, where (S `) is omitted on each line.

∀φ. {I([x 7→ σ ◦ φ]) ∧ p} C {I([x 7→ σ′ ◦ φ]) ∧ q}
(renaming)∀f. {I([x 7→ σ ◦ f(x)]) ∧ p} C {I([x 7→ σ′ ◦ f(x)]) ∧ q}
Frame

∀f.
{
I([x 7→ σ ◦ f(x)]) ∗
I(f [x 7→ 0]) ∧ p

}
C

{
I([x 7→ σ′ ◦ f(x)]) ∗
I(f [x 7→ 0]) ∧ q

}

Lemma 1a

∀f.
{
I([x 7→ σ ◦ f(x)] ◦
f [x 7→ 0]) ∧ p

}
C

{
I([x 7→ σ′ ◦ f(x)] ◦
f [x 7→ 0]) ∧ q

}

∀f. {I([x 7→ σ] ◦ f) ∧ p} C {I([x 7→ σ′] ◦ f) ∧ q}
Enter1

I. {{[x 7→ σ]} ∧ p} C {{[x 7→ σ′]} ∧ q}

A-2 Details of Examples

Turnstiles omitted in these proofs. The comments on proof trees assume
they are read from the bottom up.

A-2.1 Bit Pair

Saturation lemma: I([ 7→ [i 7→ b]◦a]) ` ∃b′. a = [3−i 7→ b′].

Proof of bp new. Let C = (p := alloc 1; [p] := 0), i.e., the body of bp new.

(trivial)∀φ. {emp} C {p 7→ 0}
(simplify)∀φ. {emp} C {{1, 2} = {1, 2} ∧ p 7→ (0 + 2 · 0)}
(definition)∀φ. {emp} C {I([p 7→[17→false, 27→false]])}
Frame∀φ. {I(φ)} C {I([p7→[17→false, 2 7→false]]) ∗ I(φ)}
Lemma 1b∀φ. {I(φ)} C {I([p7→[17→false, 2 7→false]] ◦ φ)}

Enter1
I. {{0}} C {{[p7→[17→false, 2 7→false]]}}

(simplify)
I. {emp} C {B1(p, false) ∗B2(p, false)}
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Proof of bp free. Let C = (free p), i.e., the body of bp free.

(trivial){p 7→ } C {emp}
(simplify){{1, 2} = {1, 2} ∧ p 7→ (b1 + 2 · b2)} C {emp}
(definition){I([p 7→ [17→b1, 2 7→b2]])} C {emp}
Frame∀φ. {I([p 7→ [17→b1, 27→b2]]) ∗ I(φ)} C {I(φ)}
Lemma 1a∀φ. {I([p 7→ [17→b1, 2 7→b2]] ◦ φ)} C {I(φ)}

Enter1
I. {{[p 7→ [17→b1, 27→b2]]}} C {{0}}

(simplify)
I. {B1(p, b1) ∗B2(p, b2)} C {emp}

Proof of bp get1. Let C = (x := [p]), i.e., the body of bp get1.

(trivial)∀b2. {p 7→ (b+ 2 · b2)} C {p 7→ (b+ 2 · b2) ∧ x%2 = b}
(definition)∀b2. {I([p 7→ [17→b, 2 7→b2]])} C {I([p 7→ [17→b, 2 7→b2]]) ∧ x%2 = b}
Saturation∀a. {I([p 7→ [17→b]◦a])} C {I([p 7→ [17→b]◦a]) ∧ x%2 = b}

Lemma 1c
I. {{[p 7→[17→b]]}} C {{[p 7→[17→b]]} ∧ x%2 = b}

(definition)
I. {B1(p, b)} C {B1(p, b) ∧ x%2 = b}

Proof of bp set1. Let C = (x := [p]; [p] := b + x/2∗2), i.e., the body of
bp set1.

(arithmetic)∀b2. (p 7→ b + (b′ + 2 · b2)/2 · 2 ` p 7→ b + 2 · b2)
Write∀b2. {p 7→ ∧ x = b′ + 2 · b2} [p] := b + x/2∗2 {p 7→ b + 2 · b2}
Seq,Read

∀b2. {p 7→ b′ + 2 · b2} C {p 7→ b + 2 · b2}
(definition)∀b2. {I([p 7→ [17→b′, 27→b2]])} C {I([p 7→ [17→b, 2 7→b2]])}
Saturation∀a. {I([p 7→ [17→b′] ◦ a])} C {I([p 7→ [17→b] ◦ a])}

Lemma 1c
I. {{[p 7→[17→b′]]}} C {{[p7→[17→b]]}}

(definition)
I. {B1(p, b

′)} C {B1(p, b)}

A-2.2 Fractional Permissions

Saturation lemma: I fp([ 7→ (v, z)◦a]) ` a = (v, 1− z).
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Proof of the indirect entailment. Read the following from the bottom
up and consider all free variables to be universally quantified on every line.

(trivial)∃v′. (v, 1) = (v′, 1) ∧ l 7→ v′ a` l 7→ v
(definition)

I fp([l 7→ (v, 1)]) a` l 7→ v
(cancellation)

I fp([l 7→ (v, 1)]) ∗ I fp(φ1) ∗ {φ2} a` l 7→ v ∗ {φ2} ∗ I fp(φ1)
Lemma 1a

I fp([l 7→ (v, 1)] ◦ φ1) ∗ {φ2} a` l 7→ v ∗ {φ2} ∗ I fp(φ1)
(simplify)

∃a ∈ (l
17→ v). I fp(a ◦ φ1) ∗ {φ2} a`

∃h ∈ (l 7→ v). {h ◦ φ2} ∗ I fp(φ1)
(definition)

(l
17→ v)L =||=Ifp∗1 (l 7→ v)R

Proof of read.

x /∈ fv(e, e′)
Read-std{e 7→ e′} x := [e] {e 7→ e′ ∧ x = e′}

(simplify){
∃v. (e′, 1) = (v, 1) ∧

e 7→ v

}
x := [e]

{
∃v. (e′, 1) = (v, 1) ∧

e 7→ v ∧ x = e′

}

(definition){I fp([e 7→ (e′, 1)])} x := [e] {I fp([e 7→ (e′, 1)]) ∧ x = e′}
Saturation∀a. ({I fp([e 7→ (e′, z)◦a])} x := [e] {I fp([e 7→ (e′, z)◦a]) ∧ x = e′})
Lemma 1c

I fp. {{[e 7→ (e′, z)]}} x := [e] {{[e 7→ (e′, z)]} ∧ x = e′}
(definition)

I fp. {e z7→ e′} x := [e] {e z7→ e′ ∧ x = e′}

A-2.3 Monotonic Counter

Proof of mc new. Let C = (c := alloc 1; [c] := 0), i.e., the body of mc new.

{emp} C {c 7→ 0} (trivial)

{emp} C {∃j ≥ 0. c 7→ j} (instantiate)

{emp} C {I([c 7→ 0])} (definition)

∀φ. {I(φ)} C {I([c 7→ 0]) ∗ I(φ)} Frame

∀φ. {I(φ)} C {I([c 7→ 0] ◦ φ)}
I. {{0}} C {{[c 7→ 0]}}
I. {emp} C {MC (c, 0)} (definition)

Enter1

Lemma 1b
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Proof of mc read. Let C = (x := [c]), i.e., the body of mc read.

(arithmetic)∀i′. ∀j ≥ max (i, i′). (x = j ` x ≥ i)
Read∀i′. ∀j ≥ max (i, i′). {c 7→ j} C {c 7→ j ∧ x ≥ i}

(instantiate)∀i′. ∀j ≥ max (i, i′). {c 7→ j} C {∃j ≥ max (i, i′). c 7→ j ∧ x ≥ i}
Exists∀i′. {∃j ≥ max (i, i′). c 7→ j} C {∃j ≥ max (i, i′). c 7→ j ∧ x ≥ i}
Lemma 1c

I. {{[c 7→ i]}} C {{[c 7→ i]} ∧ x ≥ i}
(definition)

I. {MC (c, i)} C {MC (c, i) ∧ x ≥ i}

Proof of mc inc. Let C = (x := [c]; [c] := x+1), i.e., the body of mc inc.

(?)

(trivial)∀j. {c 7→ j} C {c 7→ j + 1}
(weakening)∀i′. ∀j ≥ max (i, i′). {c 7→ j} C {c 7→ j + 1}

(instantiate)∀i′. ∀j ≥ max (i, i′). {c 7→ j} C {∃j ≥ max (i+ 1, i′). c 7→ j}
Exists∀i′. {∃j ≥ max (i, i′). c 7→ j} C {∃j ≥ max (i+ 1, i′). c 7→ j}
Lemma 1c

I. {{[c 7→ i]}} C {{[c 7→ i+ 1]}}
(definition)

I. {MC (c, i)} C {MC (c, i+ 1)}

where (?) is a proof of the arithmetic fact that

j ≥ max (i, i′) ` j + 1 ≥ max (i+ 1, i′)

A-2.4 Abstract Fractional Permissions

Proof of clone(c).

I. {Coll(c, V )} {Coll(c, V ) ∗ Coll(ret, V )}
(definition)

I. {I ′([c 7→ (V, 1)])} {I ′([c 7→ (V, 1)]) ∗ Coll(ret, V )}
Saturation etc.∀φ. I. {I ′([c 7→ (V, z)] ◦ φ)} {I ′([c 7→ (V, z)] ◦ φ) ∗ Coll(ret, V )}
Enter1Stack

I ′ � I. {{[c 7→ (V, z)]}L} {{[c 7→ (V, z)]} × Coll(ret, V )}
ROC-Indirect

I ′ � I. {FCollz(c, V )L} {FCollz(c, V )L ∗ FColl1(ret, V )L}

A-3 Conjunction Rule and Friends

The conjunction rule is most often written as

S ` I. {P1} C {Q1} S ` I. {P2} C {Q2}
S ` I. {P1 ∧ P2} C {Q1 ∧Q2}

Despite not being used much in separation logic, the rule has received a
lot of attention in the literature, e.g., [O’H07, DYGW11, GBC11], perhaps
because the circumstances under which it holds are theoretically interesting.
We shall here investigate restrictions on interpretations I that are sufficient
for the conjunction rule or related rules to hold in fictional separation logic.
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We will work with the following reformulation of the conjunction rule,
which is easily shown equivalent to the previous one

S ` I. {P} C {Q1} S ` I. {P} C {Q2}
S ` I. {P} C {Q1 ∧Q2}

Conjunction

Recall the definition of Iφ (Definition A-1 on page 74).

Lemma A-1. If, for all φ, Iφ distributes over conjunctions, then the con-
junction rule holds.

Proof.

I. {P} C {Q1}
∀φ. {Iφ(P )} C {Iφ(Q1)}

I. {P} C {Q2}
(definition)

∀φ. {Iφ(P )} C {Iφ(Q2)}
Conjunction-std

∀φ. {Iφ(P )} C {Iφ(Q1) ∧ Iφ(Q2)}
(assumption)

∀φ. {Iφ(P )} C {Iφ(Q1 ∧Q2)}
(definition)

I. {P} C {Q1 ∧Q2}
The Conjunction-std rule applied above is the one for standard triples,
which is known to hold. �

Note that Iφ(Q1 ∧ Q2) ` Iφ(Q1) ∧ Iφ(Q2) always holds; whereas the
converse direction does not always hold. With the following definitions, we
can give necessary and sufficient conditions for when it holds.

Definition A-1. I is relationally frame-injective if when h ∈ I(σ ◦ φ) and
h ∈ I(σ′ ◦ φ) then σ = σ′. �

Lemma A-2. I is relationally frame-injective iff, for all φ, Iφ distributes
over conjunctions.

Proof. From left to right, assume h ∈ Iφ(P ) and h ∈ Iφ(Q). The goal is to
prove h ∈ Iφ(P ∧Q). From our assumptions, we get the existence of σ ∈ P
and σ′ ∈ Q such that h ∈ I(σ ◦ φ) and h ∈ I(σ′ ◦ φ). From the last two
facts, relational frame-injectivity implies σ = σ′, so we can use this value as
our witness to prove the goal.

From right to left, assume h ∈ I(σ ◦ φ) and h ∈ I(σ′ ◦ φ). The goal is to
prove σ = σ′. Instantiate the distributivity lemma as Iφ({σ}) ∧ Iφ({σ′}) `
Iφ({σ}∧{σ′}) and specialize this to h. The right-hand side of that entailment
implies that σ = σ′, and the left-hand side is exactly our assumption. �

Definition A-2.

• I is relationally injective if when h ∈ I(σ) and h ∈ I(σ′) then σ = σ′.

• Σ is cancellative if when σ′ .= σ ◦ σ1 and σ′ .= σ ◦ σ2 then σ1 = σ2. �

Lemma A-3. For I : Σ % Σ′, if Σ is cancellative and I is relationally
injective, then I is relationally frame-injective.
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A-3.1 The Recombination Rule

Among our examples, the conjunction rule holds for bit pair and fractional
permissions but not for monotonic counters. We can generalize the rule,
however. If for some connective (2) we have Iφ(Q1)∧Iφ(Q2) ` Iφ(Q12Q2),
for all φ, then the following holds

S ` I. {P} C {Q1} S ` I. {P} C {Q2}
S ` I. {P} C {Q1 2Q2}

Recombination

Proof. Analogous to the proof of Lemma A-1. �

Lemma A-4. For the monotonic counters, the Recombination rule holds
for (2) = (∗).

Proof. Recall the algebra and interpretation for monotonic counters:

Σ = loc fin→ Z⊥ where composition in Z is max

I(f) = ∀∗ c ∈ supp(f). ∃j ≥ f(c). c 7→ j

Notice a fact about I: If h ∈ I(σ) and h ∈ I(σ′) then h ∈ I(σ ◦ σ′).
To prove the prerequisite of Recombination, assume h ∈ Iφ(Q1) and

h ∈ Iφ(Q2). The goal is to prove h ∈ Iφ(Q1∗Q2). From the two assumptions,
we get the existence of σ1 ∈ Q1 and σ2 ∈ Q2 such that h ∈ I(σ1 ◦ φ) and
h ∈ I(σ2 ◦ φ). To prove our goal, we pick the witness (σ1 ◦ σ2) ∈ (Q1 ∗Q2)
and see that h ∈ I((σ1 ◦ φ) ◦ (σ2 ◦ φ)) = I(σ1 ◦ σ2 ◦ φ) thanks to the fact
about I and idempotence of (◦). �

A-3.2 Indirect Entailment Rules

Figure A-1 summarizes the usual BI logic rules and whether they are sound
for indirect entailment. As we can see, some rules are missing. In particular,
there is no ∧-introduction rule. But such a rule is a direct consequence of
the conjunction rule when I interprets into heap:

Lemma A-5. If the conjunction rule holds for I or if Iφ distributes over
conjunctions for all φ, then ∧-introduction holds in the logic of (|=I).

Proof. To derive it from the conjunction rule, choose C = skip and see that
the definition of an indirect triple collapses to that of an indirect entailment.
The derivation from distributivity is analogous to the proof of Lemma A-1.�

Interestingly, the converses of this lemma do not hold. Before discussing
a counterexample, let us consider an even stronger condition on I: the
situation where (|=I) = (`). This equality of relations is equivalent to
having for all P and Q,

P ` Q
P |=I Q

and
P |=I Q

P ` Q
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P |=I Q Q |=I R

P |=I R

P ` Q
P |=I Q

` I. {P} skip {Q}
P |=I Q

∀x. (P (x) |=I Q)

∃x. P (x) |=I Q

P ∧Q |=I R

P |=I Q⇒ R

P |=I Q −∗ R
P ∗Q |=I R

P |=I P
′ Q |=I Q

′

P ∗Q |=I P ′ ∗Q′

The following are derivable because standard entailment implies indirect
entailment.

P |=I P P |=I > ⊥ |=I P

P |=I Q ∧R
P |=I Q

P |=I ∀x. Q(x)

P |=I Q(y)

P =||=I P ∗ emp P ∗Q |=I Q ∗ P (P ∗Q) ∗R |=I P ∗ (Q ∗R)

The following are derivable because disjunction is just a special case of ∃.

P |=I Q

P |=I Q ∨R
P |=I R Q |=I R

P ∨Q |=I R

Rules from BI logic that are unsound here:

�����������P |=I Q P |=I R

P |=I Q ∧R ���������∀x. (P |=I Q(x))

P |=I ∀x. Q(x) ������������
P |=I Q P |=I Q⇒ R

P |=I R �������P ∗Q |=I R

P |=I Q −∗ R

Figure A-1: Inference rules for indirect entailment. Symmetric ones have
been elided.
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The former of these rules always holds, while the latter appears to be con-
nected with the following notion.

Definition A-3. I is completable if for any σ there exists φ and h such that
h ∈ I(σ ◦ φ). �

This is a fairly weak property, satisfied by the bit pair, fractional permissions
and monotonic counter examples.

Lemma A-6. (|=I) = (`) if and only if I is completable and ∧-introduction
holds for (|=I).

Proof. Assume first that the relations are equal. Completability follows
from the special case that {σ} |=I ⊥ implies {σ} ` ⊥. It is trivial that
∧-introduction holds.

For the other direction of the lemma, assume P |=I Q and note that this
is equivalent to ∀σ ∈ P. ({σ} |=I Q) by the existential rule from Figure A-1.
We must show that if σ ∈ P then σ ∈ Q. The premise and our assumption
allow us to conclude that {σ} |=I Q. Now instantiate the ∧-introduction
rule with the valid premises {σ} |=I {σ} and {σ} |=I Q to conclude that
{σ} |=I {σ} ∧ Q. Specialize this proposition with φ and h obtained by
completing σ so it says that if h ∈ I(σ ◦ φ) then h ∈ Iφ({σ} ∧ Q). The
premise of that is true by the construction of φ and h, and the conclusion
implies that σ ∈ Q. �

Even though (|=I) = (`) seems like a very strong condition on I, it is
not enough to guarantee that the conjunction rule holds, as demonstrated
by the following counterexample.

Example A-1. Take the separation algebra Σ = {1, 2}∅⊥. Define I : Σ %
heap by

I(0) = emp

I(1) = {[0 7→ 0], [0 7→ 1]}
I(2) = {[0 7→ 0], [0 7→ 2]}

The mapping of 0 serves only to satisfy the side condition on (%) and plays
no interesting role here. The other mappings are chosen such that they are
different but share a common element.

This common element means that I is not relationally injective. It also
makes the conjunction rule fail since we have

` I. {{1}} [0] := 0 {{1}} and

` I. {{1}} [0] := 0 {{2}} but not

` I. {{1}} [0] := 0 {{1} ∧ {2}}
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since the last postcondition implies false.
But this I does satisfy (|=I) = (`). To show this, we must assume

P |=I Q and prove P ` Q, i.e., P ⊆ Q. There is a finite number of cases
to check, and we can reduce their number somewhat. The conclusion is
automatically true if P = ∅ or Q = {0, 1, 2} among several other cases. It is
only when subset inclusion does not hold that we must show that indirect
entailment also fails. Observe that for any I,

P ⊆ P ′ P 6|=I Q Q′ ⊆ Q
P ′ 6|=I Q′

This means that if we can disprove the indirect entailment for Q being {0, 1},
{0, 2} or {1, 2}, then we have disproved it for all values of Q except the one
we are not interested in. Knowing Q to be, for example, {0, 1}, we only
have to check the indirect entailment for P = {2} since any P ′ 6⊆ Q will a
superset of this value. So there are just three cases to prove.

• {0} 6|=I {1, 2}. If the frame is 0, there is only one choice of heap on
the left side, and it cannot be recovered on the right. If the frame is 1
or 2, it will not compose with any of the two choices on the right.

• {1} 6|=I {0, 2}. The frame must be 0 to compose with 1. The heap is
constrained on the left to be [0 7→ 0] or [0 7→ 1], but the heap [0 7→ 1]
does not exist in neither I(0) nor I(2).

• Symmetric to the previous case. �

A-4 Further Examples

A-4.1 Concrete Client of Two Modules

To show in more detail how a client can work with separating products, we
will here discuss a concrete piece of client code. It is the same example as
in Section 4.1 but with some code inserted to make it concrete.

Let Ibp and Imc be the interpretations functions for bit pairs and mono-
tonic counters respectively. Then consider the following function:

f(bp, ctr) {
b := call bp get1(bp);
if b = 0 then
call mc inc(ctr);

call bp set1(bp, 1)
}
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Ibp ∗ Imc.{B1(bp, b)L ∗MC (ctr, i)R}
Frame
Ibp ∗ Imc.{B1(bp, b)L}

ForgetL
Ibp.{B1(bp, b)}
b := call bp get1(bp);
Ibp.{B1(bp, b)}

Ibp ∗ Imc.{B1(bp, b)L}
Ibp ∗ Imc.{B1(bp, b)L ∗MC (ctr, i)R}
if b = 0 then
Ibp ∗ Imc.{B1(bp, 0)L ∗MC (ctr, i)R}

Frame, ForgetR
Imc.{MC (ctr, i)}
call mc inc(ctr);
Imc.{MC (ctr, i+ 1)}
Imc.{>}

Ibp ∗ Imc.{B1(bp, 0)L ∗ >R}
Ibp ∗ Imc.{B1(bp, )L ∗ >R}
Frame, ForgetL
Ibp.{B1(bp, )}
call bp set1(bp, 1)
Ibp.{B1(bp, 1)}

Ibp ∗ Imc.{B1(bp, 1)L ∗ >R}

{emp}
Basic
1.{emp}

CreateR
Ibp ∗ 1.{emp × emp}

LeakL
Ibp ∗ Imc.{emp × emp}
bp := call bp new();
ctr := call mc new();
call mc inc(ctr);
Ibp ∗ Imc.{B1(bp, 0)L ∗B2(bp, 0)L ∗

MC (ctr, 1)R}
Ibp ∗ Imc.{B1(bp, 0)L ∗B2(bp, 0)L ∗

MC (ctr, 1)R ∗MC (ctr, 1)R}
call f(bp, ctr);
Ibp ∗ Imc.{B1(bp, 1)L ∗B2(bp, 0)L ∗

MC (ctr, 1)R ∗ >R}
b1 := call bp get1(bp);
b2 := call bp get2(bp);
i := call mc get(ctr);
assert (b1 = 1 ∧ b2 = 0 ∧ i ≥ 1);
call bp free(bp)
Ibp ∗ Imc.{MC (ctr, 1)R ∗ >R}
Ibp ∗ Imc.{>R}

Ibp ∗ 1.{>R}
1.{>}
{>}

Figure A-2: Proof sketch for client code example

We can specify it as

Ibp ∗ Imc. {B1(bp, b)
L ∗MC (ctr, i)R} f(bp, ctr) {B1(bp, 1)L ∗ >R},

which is a fairly weak specification. Its verification is shown in the first
column of Figure A-2.

A caller of this function might look as follows.

bp := call bp new();
ctr := call mc new();
call mc inc(ctr);
call f(bp, ctr);
b1 := call bp get1(bp);
b2 := call bp get2(bp);
i := call mc get(ctr);
assert (b1 = 1 and b2 = 0 and i >= 1);
call bp free(bp)
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If the above code is called C, then the second column in Figure A-
2 shows a verification of {emp} C {>}. The steps of using Frame and
Forget around each function call as we saw in the left column are now
elided just as use of Frame is traditionally left implicit in separation logic
proof narrations. The conclusion here is that after the initial set-up of
separating products to deal with multiple modules, verification with fictional
separation logic is very similar to standard separation logic.

A-4.2 Weak-update type system

Most work on separation logic ignores the type system of the underlying
programming language, if it has any. A notable exception is the work of
Tan et al. [TSFC09], which presents a dialect of separation logic that mixes
types and assertions. We will see in this section how to reconstruct their
logic on top of fictional separation logic, saving a lot of effort compared to
proving soundness directly with respect to the operational semantics of the
language.

Types can be easier to work with than assertions in many cases where
only memory safety is to be verified. This comes up, e.g., when using the
foreign-function interface of a high-level language.

Recall that programming language values val is the disjoint union of in-
tegers, Booleans and locations. Assume the injections to val from Booleans
and integers respectively are named val int and valbool. Define types as fol-
lows:

τ : type ::= int | bool | ref τ.

Theorem A-1. There exists a separation algebra Σ, a predicate 〈v : τ〉 :
P(Σ), and an interpretation I : Σ % heap such that the rules in Figure A-3
are valid.

Proof. Choose the existentials as follows.

Σ = loc fin→ type=⊥
〈v : τ〉 = > ∗ case v, τ of

| val int(n), int⇒ emp
| valbool(b), bool⇒ emp
| val loc(l), ref τ ⇒ {[l 7→ τ ]}
| , ⇒ ⊥

I(Ψ) = ∀∗ l ∈ supp(Ψ). ∃v. l 7→ v ∧ Ψ ∈ 〈v : Ψ(l)〉

Details of the proofs are in Section A-4.2.1. �

Figure A-3 contains the essential ingredients needed in a weak-update
type system. Proving the rules is not trivial, but it is a very minimal theory,
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〈v : int〉 a` ∃n. v = val int(n) 〈v : bool〉 a` ∃b. v = valbool(b)

〈e1 : int〉 ∧ 〈e2 : int〉 ` 〈e1 + e2 : int〉 · · · 〈e1 : int〉 ∧ 〈e2 : int〉 ` 〈e1 ≥ e2 : bool〉

W-Read` I. {〈e : ref τ〉} x := [e] {〈x : τ〉}

W-Write` I. {〈e : ref τ〉 ∗ 〈e′ : τ〉} [e] := e′ {>}

W-s2w〈v : τ〉 × l 7→ v |=I∗1 〈l : ref τ〉 × emp

〈v : τ〉 a` 〈v : τ〉 ∗ >
P : P(Σ)

W-Dupl.
P ` P ∗ P

Figure A-3: The essentials of a type system for weak updates

free of distractions. Although it does not yet look like the system of Tan
et al., or any other type system, we can derive such a presentation using
standard building blocks from fictional separation logic.

We first define stack type environments, which conveniently can be mod-
elled as separation algebras although this is not essential for the theory.

Γ : env , var fin→ type=⊥
[[Γ ]] , > ∗ ∀∗x ∈ supp(Γ ). 〈x : Γ (x)〉

e :Γ τ , [[Γ ]] ` 〈e : τ〉.

As usual, we implicitly lift 〈v : τ〉 : P(Σ) to 〈e : τ〉 : asn(Σ).

Theorem A-2. The rules in Figure A-4 are valid.

Proof. The only non-trivial rule is W-Hom-◦. It is proved in Section A-
4.2.2. �

We can now define a triple that combines the type system and standard
separation logic:

{Γ, P} C {Γ ′, P ′} , I ∗ 1. {[[Γ ]]× P} C {[[Γ ′]]× P ′}.

This hybrid triple satisfies the rules in Figure A-5. The rules are similar
but not identical to those of Tan et al. [TSFC09] – we have made a few
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e1 :Γ int e2 :Γ int

(e1 + e2) :Γ int
· · · e1 :Γ int e2 :Γ int

(e1 ≥ e2) :Γ bool

W-Weaken
[[Γ ◦ Γ ′]] ` [[Γ ]]

W-w1
[[[x 7→ τ ]]] a` 〈x : τ〉

W-Hom-0
[[0]] a` > W-Hom-◦

[[Γ ◦ Γ ′]] a` [[Γ ]] ∗ [[Γ ′]]

Figure A-4: Rules for stack type environments

simplifications. The strong-heap rules are missing some side conditions that
seem unnecessary because we do not require all variables to be mentioned
in Γ . There is no Ψ -context on the rules because it is not necessary.

Theorem A-3. The rules in Figure A-5 are valid.

Proof. The proofs are easy because all the ingredients are already provided
by the theory of separating products. The W-*’ rules are proved from the
rules in Figure A-3 by framing on the stack type environment, then extend-
ing them to the separating product with ForgetL. Similarly, the S-*’ rules
are proved from the standard separation logic rules by applying ForgetR,
then framing on a stack environment. The structural and control-flow rules
are just special cases of the standard rules we get automatically from the fic-
tional separation logic framework. Details can be found in Section A-4.2.3.�

The purpose of this example was to show how much work can be saved
by not building a theory from scratch but assembling most of it from the
highly composable theories of separation algebras and separating products.
This separates the essential core of the theory, Figure A-3, from the com-
plete system. It also allows us to assemble the theories differently. Instead
of combining the type system with a standard separation logic, we could
combine it with a separation logic for fractional permissions or any other
interpretation from this text.

A-4.2.1 Detailed proofs of Figure A-3.

Proof (of W-Dupl.). Follows from idempotence of composition in Σ. �

Lemma A-1. For any f : A fin→ Σ, if f(a) = σ then f = f [a 7→ 0]◦ [a 7→ σ].

Definition A-1. IΨ ′(Ψ) , ∀∗ l ∈ supp(Ψ). ∃v. l 7→ v ∧ Ψ ′ ∈ 〈v : Ψ(l)〉. �
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x /∈ fv(e, e′)
S-Read’` {Γ, e 7→ e′} x := [e] {Γ [x 7→0], e 7→ e′ ∧ x = e′}

S-Write’` {Γ, e 7→ } [e] := e′ {Γ, e 7→ e′}

S-Alloc’` {Γ, emp} x := alloc 1 {Γ [x 7→0], x 7→ }

S-Free’` {Γ, e 7→ } free e {Γ, emp}

S-Assign’` {Γ,Q[e/x]} x := e {Γ [x 7→0], Q}

modifies(C) # fv(R) S ` {Γ, P} C {Γ,Q}
Frame’

S ` {Γ, P ∗R} C {Γ,Q ∗R}

S ` {Γ, P ∧ e} C {Γ, P}
While’

S ` {Γ, P} while e do C {Γ, P ∧ ¬e}

e :Γ τ
s2w’{Γ, x 7→ e} skip {Γ [x 7→ ref τ ], emp}

e :Γ ref τ
W-Read’` {Γ, emp} x := [e] {Γ [x 7→ τ ], emp}

e :Γ ref τ e′ :Γ τ
W-Write’` {Γ, emp} [e] := e′ {Γ, emp}

e :Γ τ
W-Alloc’` {Γ, emp} x := alloc 1; [x] := e {Γ [x 7→ ref τ ], emp}

e :Γ τ
W-Assign’` {Γ, emp} x := e {Γ [x 7→ τ ], emp}

Figure A-5: An adaptation of the inference rules by Tan et al. [TSFC09].
Rules for sequence, conditional, existential and consequence are not shown.

90

90



So we have I(Ψ) a` IΨ (Ψ), and for any Ψ ′, the interpretation IΨ ′ satisfies
the condition for using Lemma 1.

Lemma A-2. If Ψ ∈ 〈l : ref τ〉, then

I(Ψ ◦ φ) a` (∃v. l 7→ v ∧ Ψ ◦ φ ∈ 〈v : τ〉) ∗ IΨ◦φ((Ψ ◦ φ)[l 7→ 0]).

Proof. The assumption that Ψ ∈ 〈l : ref τ〉 implies that (Ψ ◦ φ)(l) = τ , so
Lemma A-1 is applicable. (We always know that Ψ ◦ φ is defined since this
fact is implied by both sides of the bi-entailment.) Now we can prove the
lemma:

I(Ψ ◦ φ) a` (definition)

IΨ◦φ(Ψ ◦ φ) a` Lemma A-1

IΨ◦φ([l 7→ τ ] ◦ (Ψ ◦ φ)[l 7→ 0]) a` Lemma 1a

IΨ◦φ([l 7→ τ ]) ∗ IΨ◦φ((Ψ ◦ φ)[l 7→ 0]) a` (definition)

(∃v. l 7→ v ∧ Ψ ◦ φ ∈ 〈v : τ〉) ∗ IΨ◦φ((Ψ ◦ φ)[l 7→ 0]) �

Proof (of W-Write).

Write-std` {e 7→ } [e] := e′ {e 7→ e′}
Frame

` ∀φ, Ψ.
{
Ψ ∈ (〈e : ref τ〉 ∗ 〈e′ : τ〉) ∧
e 7→ ∗ IΨ◦φ((Ψ◦φ)[e 7→ 0])

}
[e] := e′

{
Ψ ∈ (〈e : ref τ〉 ∗ 〈e′ : τ〉) ∧
e 7→ e′ ∗ IΨ◦φ((Ψ◦φ)[e 7→ 0])

}

Lemma A-2` ∀φ, Ψ. {Ψ ∈ (〈e : ref τ〉 ∗ 〈e′ : τ〉) ∧ I(Ψ ◦ φ)} [e] := e′ {I(Ψ ◦ φ)}
Exists` ∀φ. {∃Ψ ∈ (〈e : ref τ〉 ∗ 〈e′ : τ〉). I(Ψ ◦ φ)} [e] := e′ {∃Ψ. I(Ψ ◦ φ)}
(definition)` I. {〈e : ref τ〉 ∗ 〈e′ : τ〉} [e] := e′ {>}

�

Proof (of W-Read).

Read-std

` ∀φ, Ψ, v.




Ψ ∈ 〈e : ref τ〉 ∧ e 7→ v ∧
Φ ◦ φ ∈ 〈v : τ〉 ∗
IΨ◦φ((Ψ◦φ)[e 7→ 0])



x := [e]





x = v ∧ ∃l.
Ψ ∈ 〈l : ref τ〉 ∧ l 7→ v ∧
Φ ◦ φ ∈ 〈v : τ〉 ∗
IΨ◦φ((Ψ◦φ)[l 7→ 0])





Lemma A-2` ∀φ. ∀Ψ. {Ψ ∈ 〈e : ref τ〉 ∧ I(Ψ ◦ φ)} x := [e] {Ψ ◦ φ ∈ 〈x : τ〉 ∧ I(Ψ ◦ φ)}
(instantiate)

` ∀φ. ∀Ψ. {Ψ ∈ 〈e : ref τ〉 ∧ I(Ψ ◦ φ)} x := [e] {Iφ〈x : τ〉}
Exists

` ∀φ. {∃Ψ ∈ 〈e : ref τ〉. I(Ψ ◦ φ)} x := [e] {Iφ〈x : τ〉}
(definition)` I. {〈e : ref τ〉} x := [e] {〈x : τ〉}

Notice that the existential in the postcondition is instantiated not to Ψ but
to Ψ ◦ φ. �
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Proof (of W-s2w).

Lemma A-2∀φ, Ψ. (Ψ [l 7→τ ] ∈ 〈v : τ〉 ∧ I((Ψ [l 7→τ ] ◦ φ)[l 7→0]) ∗ l 7→ v ` I(Ψ [l 7→τ ] ◦ φ))
(?)

∀φ, Ψ. (Ψ ∈ 〈v : τ〉 ∧ I(Ψ ◦ φ) ∗ l 7→ v ` Iφ〈l : ref τ〉)
∃L∀φ. (Iφ〈v : τ〉 ∗ l 7→ v ` Iφ〈l : ref τ〉)

(subrelation)
∀φ. (Iφ〈v : τ〉 ∗ l 7→ v |=1 I

φ〈l : ref τ〉)
StackComp〈v : τ〉 × l 7→ v |=I∗1 〈l : ref τ〉 × emp

The names of the inference rules applied above are those from the indirect
triple since the corresponding ones from indirect entailment don’t have a
name right now. The application of StackComp is justified because I ∗1 =
I � 1 as mentioned in Section 6.

In the step labelled (?), we exploit that the left-hand side of the entail-
ment implies that l /∈ supp(Ψ ◦ φ). Therefore, Ψ ◦ φ = (Ψ [l 7→τ ] ◦ φ)[l 7→0].
Also, Ψ ∈ 〈v : τ〉 ` Ψ [l 7→τ ] ∈ 〈v : τ〉, and we can instantiate the existential
on the right of the entailment to Ψ [l 7→ τ ] since this is sure to compose with
φ. �

A-4.2.2 Detailed proofs of Figure A-4.

Proof (of expression typings). These are simply reformulations of the rules
in Figure A-3. �

Proof (of W-Weaken). Corollary of W-Hom-◦ (proved below). �

Proof (of W-w1 and W-Hom-0). By definition. �

Lemma A-3. 〈v : τ〉 ∗ 〈v : τ ′〉 ` τ = τ ′.

Proof. By case analysis on v, τ, τ ′. The only non-trivial case is where v :
loc, τ = ref τ1, τ

′ = ref τ ′1, where we use the fact that [v 7→ τ1] ◦ [v 7→ τ ′1] is
only defined when τ1 = τ ′1, and therefore τ = τ ′. �

It seems somewhat coincidental that the above lemma holds in our type
system, and it should not be relied on too much. It is needed to show
W-Hom-◦ from right to left.

Proof (of W-Hom-◦). Let us first show the lemma that [[[x 7→ τ ] ◦ Γ ]] a`
〈x : τ〉∗ [[Γ ]]. If x /∈ supp(Γ ), then Lemma 1a applies, and the lemma follows
by the trivial W-w1. If instead x ∈ supp(Γ ), let us first show the entailment
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from left to right. The composition being defined implies that Γ (x) = τ .

[[[x 7→ τ ] ◦ Γ ]] a` Lemma A-1

[[[x 7→ τ ] ◦ [x 7→ τ ] ◦ Γ [x 7→ 0]]] a` (idempotence)

[[[x 7→ τ ] ◦ Γ [x 7→ 0]]] a` Lemma 1a

[[[x 7→ τ ]]] ∗ [[Γ [x 7→ 0]]] a` W-w1

〈x : τ〉 ∗ [[Γ [x 7→ 0]]] ` W-Dupl.

〈x : τ〉 ∗ 〈x : τ〉 ∗ [[Γ [x 7→ 0]]] a` Lemma 1a

〈x : τ〉 ∗ [[[x 7→ τ ] ◦ Γ [x 7→ 0]]] a` Lemma A-1

〈x : τ〉 ∗ [[Γ ]].

In the other direction, we have to appeal to Lemma A-3.

〈x : τ〉 ∗ [[Γ ]] a` Lemma A-1

〈x : τ〉 ∗ [[[x 7→ Γ (x)] ◦ Γ [x 7→ 0]]] a` Lemma 1a

〈x : τ〉 ∗ 〈x : Γ (x)〉 ∗ [[Γ [x 7→ 0]]] ` Lemma A-3

Γ (x) = τ ∧ 〈x : τ〉 ∗ [[Γ [x 7→ 0]]] a` Lemma 1a

Γ (x) = τ ∧ [[[x 7→ τ ] ◦ Γ [x 7→ 0]]] a` (idempotence)

Γ (x) = τ ∧ [[[x 7→ τ ] ◦ [x 7→ τ ] ◦ Γ [x 7→ 0]]] ` Lemma A-1

[[[x 7→ τ ] ◦ Γ ]].

With this lemma done, we can now prove W-Hom-◦ by induction over
|supp(Γ )|. The base case holds by Lemma 1a. In the inductive case, we get
the existence of x, τ, Γ1 such that Γ = [x 7→ τ ] ◦ Γ1 with x /∈ supp(Γ1).

[[[x 7→ τ ] ◦ Γ1 ◦ Γ ′]] a` (above lemma)

〈x : τ〉 ∗ [[Γ1 ◦ Γ ′]] a` (induction hyp.)

〈x : τ〉 ∗ [[Γ1]] ∗ [[Γ ′]] a` Lemma 1a

[[[x 7→ τ ] ◦ Γ1]] ∗ [[Γ ′]]. �

A-4.2.3 Detailed proofs of Figure A-5.

Proof (of W-Write’).

e :Γ ref τ e′ :Γ τ

[[Γ ]] ` 〈e : ref τ〉 ∧ 〈e′ : τ〉
(?)

[[Γ ]] ` 〈e : ref τ〉 ∗ 〈e′ : τ〉

W-Write` I. {〈e : ref τ〉 ∗ 〈e′ : τ〉} [e] := e′ {>}
Frame` I. {〈e : ref τ〉 ∗ 〈e′ : τ〉 ∗ [[Γ ]]} [e] := e′ {> ∗ [[Γ ]]}
ROC` I. {[[Γ ]]} [e] := e′ {[[Γ ]]}

ForgetL` I ∗ 1. {[[Γ ]]× emp} [e] := e′ {[[Γ ]]× emp}

The step labelled (?) uses W-Dupl. �
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Proof (of W-Read’).

e :Γ ref τ

[[Γ ]] ` 〈e : ref τ〉

W-Read` I. {〈e : ref τ〉} x := [e] {〈x : τ〉}
Frame` I. {〈e : ref τ〉 ∗ [[Γ [x 7→ 0]]]} x := [e] {〈x : τ〉 ∗ [[Γ [x 7→ 0]]]}
W-Weaken` I. {〈e : ref τ〉 ∗ [[Γ ]]} x := [e] {〈x : τ〉 ∗ [[Γ [x 7→ 0]]]}

ROC` I. {[[Γ ]]} x := [e] {[[Γ [x 7→ τ ]]]}
ForgetL` I ∗ 1. {[[Γ ]]× emp} x := [e] {[[Γ [x 7→ τ ]]]× emp}

�

Proof (of s2w’).

e :Γ τ

W-s2w〈v : τ〉 × l 7→ v |=I∗1 〈l : ref τ〉 × emp
(add stack)〈e : τ〉 × x 7→ e |=I∗1 〈x : ref τ〉 × emp

Frame
[[Γ [x 7→ 0]]] ∗ 〈e : τ〉 × x 7→ e |=I∗1 [[Γ [x 7→ 0]]] ∗ 〈x : ref τ〉 × emp

W-Weaken
[[Γ ]] ∗ 〈e : τ〉 × x 7→ e |=I∗1 [[Γ [x 7→ 0]]] ∗ 〈x : ref τ〉 × emp

ROC
[[Γ ]]× x 7→ e |=I∗1 [[Γ [x 7→ ref τ ]]]× emp

(same definition)` I ∗ 1. {[[Γ ]]× x 7→ e} skip {[[Γ [x 7→ ref τ ]]]× emp}
�

Proof (of W-Alloc’).

std` 1. {emp} x := alloc 1; [x] := e {x 7→ e}
ForgetR

` I ∗ 1. {empR} x := alloc 1; [x] := e {(x 7→ e)R}
Frame` I ∗ 1. {[[Γ ]]× emp} x := alloc 1; [x] := e {[[Γ ]]× x 7→ e} e :Γ τ

s2w’` I ∗ 1. {[[Γ ]]× emp} x := alloc 1; [x] := e {[[Γ [x 7→ ref τ ]]]× emp}
�

Proof (of W-Assign’).

e :Γ τ

[[Γ ]] ` 〈e : τ〉

Assign
I. {〈e : τ〉} x := e {〈x : τ〉}

Frame
I. {〈e : τ〉 ∗ [[Γ [x 7→ 0]]]} x := e {〈x : τ〉 ∗ [[Γ [x 7→ 0]]]}

W-Weaken
I. {〈e : τ〉 ∗ [[Γ ]]} x := e {〈x : τ〉 ∗ [[Γ [x 7→ 0]]]}

ROC
I. {[[Γ ]] ∗ [[Γ ]]} x := e {〈x : τ〉 ∗ [[Γ [x 7→ 0]]]}

W-Dupl., Lemma 1a` I. {[[Γ ]]} x := e {[[Γ [x 7→ τ ]]]}
�

Proof (of S-Write’ and S-Free’).

Free
1. {e 7→ } free e {emp}

ForgetR
I ∗ 1. {emp × e 7→ } free e {emp × emp}

Frame
I ∗ 1. {[[Γ ]]× e 7→ } free e {[[Γ ]]× emp}

This proves S-Free’. The proof of S-Write’ is similar. �
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Proof (of S-Read’, S-Alloc’ and S-Assign’).

Assign
1. {Q[e/x]} x := e {Q}

ForgetR
I ∗ 1. {emp ×Q[e/x]} x := e {emp ×Q}

Frame
I ∗ 1. {[[Γ [x 7→0]]]×Q[e/x]} x := e {[[Γ [x 7→0]]]×Q}

W-Weaken
I ∗ 1. {[[Γ ]]×Q[e/x]} x := e {[[Γ [x 7→0]]]×Q}

The other proofs are similar. �

Structural rules and control-flow rules follow directly from their general
counterparts in fictional separation logic because of how connectives (∧,∃, ∗)
distribute over the Cartesian product.

A-4.3 Fine-grained Collection

The example of a fine-grained collection is borrowed from the work on Con-
current Abstract Predicates (CAP) [DYDG+10]. We reformulate it in fic-
tional separation logic to allow comparison between this approach and the
CAP approach. The two systems seem to allow very similar specifications to
be exposed to clients even though the correctness proofs behind them look
and feel completely different.

This example is also an opportunity to show how an existing specification
can be refined in fictional separation logic. That is probably a good work flow
in practice: give a correct and abstract specification of a module in standard
separation logic, then show that it is refined by an indirect specification
that hides sharing. These two steps can be carried out independently and
concurrently as long as they agree on the intermediate specification.

In this case, we will assume a standard specification of a collection mod-
ule: Sstandard from Figure A-6. This specification is identical to the one
assumed in [DYDG+10], except that we have added creation and disposal
functions to make the example complete and realistic.

The fine-grained specification is shown as Sindirect in Figure A-6. There
is a lot to take in, but the idea is to have a representation predicate per
(potential) member of the collection rather than one for the collection as a
whole. This recognizes that if clients logically partition the set of program
values val between them, then they can share access to the collection and
ignore each others’ interference since they will never query, add or remove
the same values. For example, one client could promise to only access even
numbers in a collection, while another client promised to only access odd
numbers from the same collection. They would then access the collection
with logically disjoint footprints, and the fine-grained specification would
allow them to ignore each others’ interference.

The intuitive reading of the four representation predicates is as follows.
In(c, v) means that value v is in (the collection pointed to by) c. Out(c, v)
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Sstandard , ∃Coll : loc × Pfin(val)→ P(heap). ∀c, V.
(Coll(c, ) ∗ Coll(c, ) ` ⊥) ∧
{emp} coll new() {Coll(ret, ∅)} ∧
{Coll(c, )} coll free(c) {emp} ∧
{Coll(c, V )} coll contains(c, v) {Coll(c, V ) ∧ ret = (v ∈ V )} ∧
{Coll(c, V )} coll add(c, v) {Coll(c, V ∪ {v})} ∧
{Coll(c, V )} coll remove(c, v) {Coll(c, V \ {v})}

Sindirect , ∃Σ : sepalg . ∃I : Σ % heap.

∃In : loc × val → P(Σ).

∃Outs : loc × P(val)→ P(Σ).

let Out(c, v) := Outs(c, {v}) in

let Own(c, v) := In(c, v) ∨Out(c, v) in

(∀c, v, V1, V2.
(Own(c, v) ∗Own(c, v) ` ⊥) ∧
(V1 # V2 ⇒ (Outs(c, V1 ∪ V2) a` Outs(c, V1) ∗Outs(c, V2)))

) ∧
I. {emp} coll new() {Outs(ret, val)} ∧
I. {∃V. Outs(c, val \ V ) ∗ ∀∗ v ∈ V. In(c, v)} coll free(c) {emp} ∧
I. {In(c, v)} coll contains(c, v) {In(c, v) ∧ ret = true} ∧
I. {Out(c, v)} coll contains(c, v) {Out(c, v) ∧ ret = false} ∧
I. {Own(c, v)} coll add(c, v) {In(c, v)} ∧
I. {Own(c, v)} coll remove(c, v) {Out(c, v)}

Figure A-6: Standard (coarse-grained) and indirect (fine-grained) specifi-
cations of a collection module.
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means that value v is not in c. Outs(c, V ) generalizes this to potentially
infinite sets of values. Own(c, v) is the permission to access the state of v
being in c without knowing whether it is currently there. In all cases, the
asserter of a predicate has exclusive access to the knowledge of whether v is
in c.

We can now state the correctness theorem of the fine-grained specifica-
tion.

Theorem A-4. With reference to the two specifications defined in Fig-
ure A-6, in the context of any program, Sstandard ` Sindirect.

Proof. Instantiate the existential Σ to a separation algebra where each
pointer to a collection maps to a pair: the values that are surely in the
collection and the values that are surely not in the collection.

Σ = loc fin→ Σinout where

Σinout , {(V∈, V6∈) : Pfin(val)× P(val) | V∈, V6∈ disjoint}
In(c, v) = {[c 7→ ({v}, ∅)]}

Outs(c, V ) = {[c 7→ (∅, V )]}

Composition in Σinout is pairwise disjoint union where possible:

(V∈, V6∈) ◦ (V ′∈, V
′
6∈) =

{
(V∈ ∪ V ′∈, V6∈ ∪ V ′6∈) if V∈, V6∈, V ′∈, V

′
6∈ disjoint

undefined otherwise

The interpretation I is similar to previous examples: it requires all po-
tential values to be accounted for, and then it asserts the Coll predicate for
the values in the collection

I(f) = ∀∗ c ∈ supp(f). (π1f(c) ∪ π2f(c)) = val ∧ Coll(c, π1f(c))

Having chosen the existentials, we proceed to prove each conjunct of Sindirect.

Proof of Own(c, v)∗Own(c, v) ` ⊥. Since Own is defined to be a disjunc-
tion, we can consider all four possible cases and see that our composition
operation is undefined in all of them.

Proof of Outs(c, V1 ] V2) a` Outs(c, V1) ∗ Outs(c, V2). Expanding the
definition of Outs, this is equivalent to

{[c 7→ (∅, V1 ] V2)]} = {[c 7→ (∅, V1)]} ∗ {[c 7→ (∅, V2)]}

Expanding the definitions of separating conjunction and of composition on
finite maps, this holds if (∅, V1 ] V2) = (∅, V1) ◦ (∅, V2), which is true by
definition of composition in our SA.
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Proof of coll new.

(assumption){emp} coll new() {Coll(ret, ∅)}
(simplify){emp} coll new() {∅ ∪ val = val ∧ Coll(ret, ∅)}
(definition){emp} coll new() {I([ret 7→ (∅, val)])}
Frame∀φ. {I(φ)} coll new() {I([ret 7→ (∅, val)]) ∗ I(φ)}
Lemma 1b∀φ. {I(φ)} coll new() {I([ret 7→ (∅, val)] ◦ φ)}

Enter1
I. {{0}} coll new() {{[ret 7→ (∅, val)]}}

(definition)
I. {emp} coll new() {Outs(ret, val)}

Proof of coll free.

(assumption)∀φ. {Coll(c, V )} coll free(c) {emp}
(simplify)∀φ. {V ∪ (val \ V ) = val ∧ Coll(c, V )} coll free(c) {emp}
(definition)∀φ. {I([c 7→ (V, val \ V )])} coll free(c) {emp}

Frame∀φ. {I([c 7→ (V, val \ V )]) ∗ I(φ)} coll free(c) {I(φ)}
Lemma 1a∀φ. {I([c 7→ (V, val \ V )] ◦ φ)} coll free(c) {I(φ)}

Enter1
I. {{[c 7→ (V, val \ V ])}} coll free(c) {emp}

I. {{[c 7→ (∅, val \ V ])} ∗ {[c 7→ (V, ∅)]}} coll free(c) {emp}
I. {Outs(c, val \ V ) ∗ ∀∗ v ∈ V. In(c, v)} coll free(c) {emp}

At the application of Lemma 1a, its side condition of disjoint supports is
satisfied since Σ was defined such that only the unit value composes with
(V, val \V ), so the pointer c cannot be in the support of the frame φ at that
point.

Proof of coll contains, case In. In this proof, we abbreviate coll contains
as cc.

(assumption)∀V∈. {Coll(c, {v} ] V∈)} cc(c, v) {Coll(c, {v} ] V∈) ∧ ret = true}
(weaken)

∀V∈, V/∈. {v} ] V∈ ] V/∈ = val ⇒
{Coll(c, {v} ] V∈)} cc(c, v) {Coll(c, {v} ] V∈) ∧ ret = true}

(simplify)
∀V∈, V/∈. {v}, V∈, V/∈ disjoint⇒ {I([c 7→ ({v} ] V∈, V/∈)])}
cc(c, v) {I([c 7→ ({v} ] V∈, V/∈)]) ∧ ret = true}

Lemma 1c
I. {[c 7→ ({v}, ∅)]} cc(c, v) {[c 7→ ({v}, ∅)] ∧ ret = true}

(definition)
I. {In(c, v)} cc(c, v) {In(c, v) ∧ ret = true}

Proof of coll contains, case Out. In this proof, we abbreviate coll contains
as cc.
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(assumption)∀V∈. {v} /∈ V∈ ⇒ {Coll(c, V∈)} cc(c, v) {Coll(c, V∈) ∧ ret = false}
(weaken)

∀V∈, V/∈. {v} ] V∈ ] V/∈ = val ⇒
{Coll(c, V∈)} cc(c, v) {Coll(c, V∈) ∧ ret = false}

(simplify)
∀V∈, V/∈. {v}, V∈, V/∈ disjoint⇒ {I([c 7→ (V∈, {v} ] V/∈)])}
cc(c, v) {I([c 7→ (V∈, {v} ] V/∈)]) ∧ ret = false}

Lemma 1c
I. {[c 7→ (∅, {v})]} cc(c, v) {[c 7→ (∅, {v})] ∧ ret = false}

(definition)
I. {Out(c, v)} cc(c, v) {Out(c, v) ∧ ret = false}

The add and remove functions are similar, also using Lemma 1c. �

A-4.3.1 Comparison to Concurrent Abstract Predicates.

The only essential differences from the CAP specification [DYDG+10] is our
Outs predicate, which is needed to specify creation and disposal. We have
specified Out in terms of Outs. It might be tempting to do it the other way
around and let Out be the primitive predicate and define Outs(c, V ) as ∀∗ v ∈
V. Out(c, v), but this is impossible since iterated separating conjunction is
only defined on finite domains. Defining it infinitely would require an infinite
composition operator on the underlying separation algebra.

A-4.4 Permission Scaling

We can easily add a convenient feature to the assertion logic of fractional
permissions from Section 5.1: permission scaling. The idea is to have an
assertion z · P that loosely speaking multiplies every permission in P by z.
Assuming we have an operation z ·h that multiplies every permission in the
fractional heap h by z, define

z · P , {z · h | h ∈ P}

A crucial difference between this definition and the intuition mentioned is
that we have

z · (l1 17→ v1 ∗ l2 17→ v2) ` l1 6= l2

for any z, while a scaling on the individual points-to predicates only admits
the weaker and much stranger rule

z > 1
2

l1
z7→ v1 ∗ l2 z7→ v2 ` l1 6= l2

This leads to the problem noticed by Bornat et al. [BCOP05] that a tree
predicate in which every points-to assertion is multiplied by some z actually
describes a DAG if z ≤ 1

2 .
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With permission scaling, one just defines an ordinary tree predicate
tree(t, τ), and a scaled tree is then z · tree(t, τ). The latter is a tree, not a
DAG, and it is unnecessary for the tree library to export lemmas about how
the predicate can be fractionally split and joined since these follow from the
general theory of permission scaling. Note that one does not get the tree
property from Boyland’s definition of permission scaling [Boy07] because he
allows fractions greater than 1 in intermediate heaps.

The following assertion logic inference rules are valid.

p pure

z·p a` p l 7 z·z′−−→ v a` z · (l z
′
7→ v) z · (P ∗Q) ` z·P ∗ z·Q

(z1 u z2) · P ` z1·P ∗ z2·P
P precise

z1·P ∗ z2·P ` (z1 u z2) · P
P ` Q

z·P ` z·Q z · ∃x. P (x) a` ∃x. z · P (x)

The reason for introducing permission scaling here is to show that it can
be added to this logic at no cost. It is reasonable to require this feature to
be supported when encoding fractional permissions in other systems, such
as Concurrent Abstract Predicates [DYDG+10].

A-4.5 Better Monotonic Counters

The monotonic counters example in Section 3.3 was designed to address the
verification challenge posed in [PP11]. With a few changes, we can make
it even better. First, we can strengthen the specification of mc read so it
becomes

∀i. I. {MC (c, i)} mc read(c) {MC (c, ret) ∧ ret ≥ i}.

The postcondition previously had MC (c, i) instead of MC (c, ret). Second,
we can remove the awkward > from the weakening corollary and instead
show

i ≤ j ∧MC (c, j) ` MC (c, i).

To make this work, we only have to change the definition of MC , leaving
the other existentials as they were:

Σ = loc fin→ Z⊥ where composition in Z is max

I(f) = ∀∗ c ∈ supp(f). ∃k ≥ f(c). c 7→ k

MC (c, i) = ∃j ≥ i. {[c 7→ j]}

We then have to reverify all functions with the new definition of MC .
The interesting case is mc read.
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Proof of mc read. Let C = (x := [c]), i.e., the body of mc read.

Read∀k. {c 7→ k} x := [c] {c 7→ k ∧ x = k}
∀j ≥ i. ∀φ. ∀k ≥ j ◦ φ. {c 7→ k} C {c 7→ k ∧ x = k} (?)

Consequence∀j ≥ i. ∀φ. ∀k ≥ j ◦ φ. {c 7→ k} C {x ≥ x ◦ φ ∧ c 7→ x ∧ x ≥ i}
(instantiate)∀j ≥ i. ∀φ. ∀k ≥ j ◦ φ. {c 7→ k} C {∃k ≥ x ◦ φ. c 7→ k ∧ x ≥ i}
Exists∀j ≥ i. ∀φ. {∃k ≥ j ◦ φ. c 7→ k} C {∃k ≥ x ◦ φ. c 7→ k ∧ x ≥ i}
(definition)∀j ≥ i. ∀φ. {I([c 7→ j ◦ φ])} C {I([c 7→ x ◦ φ]) ∧ x ≥ i}

Lemma 1c∀j ≥ i. I. {{[c 7→ j]}} C {{[c 7→ x]} ∧ x ≥ i}
(instantiate)∀j ≥ i. I. {{[c 7→ j]}} C {∃j ≥ x. {[c 7→ j]} ∧ x ≥ i}
Exists

I. {∃j ≥ i. {[c 7→ j]}} C {∃j ≥ x. {[c 7→ j]} ∧ x ≥ i}
(definition)

I. {MC (c, i)} C {MC (c, x) ∧ x ≥ i}
The proof tree labelled (?) above should be a proof of the arithmetic fact
that if j ≥ i and k ≥ j ◦ φ, then c 7→ k ∧ x = k ` x ≥ x ◦ φ ∧ c 7→ x ∧ x ≥ i.

Note that while the above i, j, k belong to Z, the frame φ belongs to Z⊥;
i.e., the integers extended with a unit element. Since we made Z a permission
algebra with composition max , composition in Z⊥ behaves like max lifted
to also being defined for negative infinity, i.e., the unit of Z⊥. Therefore,
the composition (◦) above is max lifted to treat the unit as negative infinity.

Proof of mc new. Let C = (c := alloc 1; [c] := 0), i.e., the body of mc new.

...
I. {emp} C {{[c 7→ 0]}}

(instantiate)
I. {emp} C {∃j ≥ 0. {[c 7→ j]}}

(definition)
I. {emp} C {MC (c, 0)}

The top part of the proof works like the original proof in Section A-2.3.

Proof of mc inc. Let C = (x := [c]; [c] := x+1), i.e., the body of mc inc.

...
∀j ≥ i. I. {{[c 7→ j]}} C {{[c 7→ j + 1]}}

(instantiate)∀j ≥ i. I. {{[c 7→ j]}} C {∃j ≥ i+ 1. {[c 7→ j]}}
Exists

I. {∃j ≥ i. {[c 7→ j]}} C {∃j ≥ i+ 1. {[c 7→ j]}}
(definition)

I. {MC (c, i)} C {MC (c, i+ 1)}
The top part of the proof works like the original proof in Section A-2.3.
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Abstract

Separation logic is a powerful tool for reasoning about structured,
imperative programs that manipulate pointers. However, its applica-
tion to unstructured, lower-level languages such as assembly language
or machine code remains challenging. In this paper we describe a sep-
aration logic tailored for this purpose that we have applied to x86
machine-code programs.

The logic is built from an assertion logic on machine states over
which we construct a specification logic that encapsulates uses of frames
and step indexing. The traditional notion of Hoare triple is not ap-
plicable directly to unstructured machine code, where code and data
are mixed together and programs do not in general run to completion,
so instead we adopt a continuation-passing style of specification with
preconditions alone. Nevertheless, the range of primitives provided by
the specification logic, which include a higher-order frame connective,
a novel read-only frame connective, and a ‘later’ modality, support
the definition of derived forms to support structured-programming-
style reasoning for common cases, in which standard rules for Hoare
triples are derived as lemmas. Furthermore, our encoding of scoped
assembly-language labels lets us give definitions and proof rules for
powerful assembly-language ‘macros’ such as while loops, conditionals
and procedures.

We have applied the framework to a model of sequential x86 ma-
chine code built entirely within the Coq proof assistant, including tactic
support based on computational reflection.

1 Introduction

Formal verification is one of the most important techniques for building reli-
able computer systems. Research in software verification typically, and quite
reasonably, concerns reasoning about the high-level programming languages
with which most programmers work. But to build genuinely trustworthy
systems, one really needs to verify the machine code that actually runs,

∗Re-formatted version of the original article, which appeared at POPL’13.
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whether it be hand-crafted or the output of a compiler. This is particularly
important for establishing security properties, since failures of abstraction
between the high and low-level models often lead to vulnerabilities (and be-
cause hand-crafted machine code is often found in security-critical places,
such as kernels). A further motivation for verifying low-level code is that real
systems are composed of components written in many different languages;
machine code is the only truly universal lingua franca by which we can rea-
son about properties of such compositions. Finally, experience shows that
hand-written low-level programs are simply much harder to get right than
higher-level ones, increasing the credibility gap between formal and informal
verifications.

Verifying low-level, unstructured programs [39, 18], and compilers that
produce them [24], both have a long history. And since such verifications
are, like low-level programs themselves, extremely lengthy and error-prone,
some form of mechanical assistance is absolutely crucial. This assistance of-
ten takes the form of automated decision procedures for first-order logic and
various more specialized theories, combined by an SMT solver [21]. Here,
however, our focus is on deductive Hoare-style verification of machine-code
programs using an interactive proof assistant, in our case Coq. This re-
quires more manual effort on the part of the user, but allows one to work
with much richer mathematical models and specifications, which are par-
ticularly important for modularity. Both approaches to mechanization also
have considerable history, with much pioneering work applying interactive
provers to low-level code having been done with the Boyer-Moore prover in
the 1980s [25, 41]. Recently, however, an exciting confluence of advances in
foundational theory, program logics (most notably separation logic [35]) and
the technology of proof assistants, together with increased interest in formal
certification, have led to an explosion of work on mechanized verification
of real (or at least, realistic) software, including compilers and operating
systems. Although many of these formalizations do involve reasoning about
machine code or assembly language programs, program logics for low-level
code are generally much less satisfactory, and more ad hoc, than those for
high-level languages.

The design of a high-level program logic tends to follow closely the struc-
ture and abstractions provided by the language. Commands in a while-
language, for example, may be modelled as partial functions from stores to
stores, which are only combined in certain very restricted ways. The clas-
sical Hoare triple, relating a predicate on inputs to a predicate on outputs,
is a natural (indeed, inevitable) and generally satisfactory form of specifi-
cation for such functions. Furthermore, the structured form of programs
leads to particularly elegant, syntax-directed program logic rules for com-
posing verifications. Machine code, by contrast, has almost nothing in the
way of inherent structure or abstractions to guide one, supports challenging
patterns of programming and also involves a host of messy complexities.
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The messy complexities include large instruction sets with variable-length
encodings, the need to work with bit-level operations and arithmetic mod
232, alignment, a plethora of flags, registers, addressing modes, and so on.
These inevitably cause some pain, but are just the sort of thing proof assis-
tants are good at checking precisely and, with a well-engineered formaliza-
tion, removing some of the drudgery from.1 There is, of course, complexity
of a quite different order associated (at both high- and low-level) with con-
currency – especially relaxed memory models on multiprocessors – which we
do not address at all in this paper. Even in the sequential case, however,
the lack of inherent structure in low-level code is a fundamental problem.

Machine code features unstructured control flow. A contiguous block
of instructions potentially has many entry points and many exits, with the
added complication that the same bytes may decode differently according to
the entry point. Machine code is almost entirely untyped and higher-order,
with no runtime tagging: any word in memory or a register may be treated
as a scalar value, a pointer or a code pointer, and common coding patterns
do make use of this flexibility: stealing bits in pointers, storing metadata
at offsets from code pointers, computing branches, and so on. Finally, code
and data live in the same heap, allowing code generation, self-modifying code
and code examination, for example for interpreting instructions. The most
basic abstractions, such as memory allocation or function calling, are not
built in, but are conventions that must be specified, followed and verified at
appropriate points. Furthermore, code that implements even the simplest of
these abstractions, such as first-order function calls, uses features of machine
code whose high-level analogues (higher-order, dynamically allocated local
state) are challenging to reason about – and a subject of active research –
even in very high-level languages such as ML.

Some logics, type systems and analyses for machine code deal with these
complexities by imposing structure and restrictions on the code they deal
with. For example, one can enforce a traditional basic block structure,
hard-code memory allocation as a special pseudo-instruction or treat call-
ing and a call-stack specially [27, 5, 31, 40]. Such techniques can work well
for verifying code that looks like it came from a C compiler, but we would
like something more generally applicable, able to verify smoothly higher-
order code, systems code such as schedulers and allocators, and code that
uses clever bit-level representation tricks. In previous work, for example
on compiling a functional language to a rather idealized assembly language
[7], one of us has proved useful results in Coq using a shallow embedding
of step-indexed, separated predicates and relations, a notion of biorthogo-
nality (‘perping’) for code pointers, explicit second-order quantification for
framing, and a more-or-less ad hoc collection of lemmas for instructions,

1Logics for high-level languages often ignore fixed-length arithmetic, even when that is
what is provided by real implementations.
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quantifier manipulation and entailment. Given sufficient effort, such an ap-
proach can undeniably be pushed through, but the proofs and specifications
are very clumsy; although some of the connectives have respectable prop-
erties, there is certainly no sense that one is working in a well-structured
program logic, with a well-behaved proof theory. Applying such a naive
approach in the context of real machine code, with the above-mentioned
messy complexities and in which we would clearly need to build numerous
higher-level proof abstractions, seemed unlikely to work well.

Separation logics for higher-level languages, by contrast, do have a good
proof theory. In particular, work on higher-order frame rules allows local
reasoning about higher-order programs, allowing invariants to be framed
onto commands in context by distributing them through the specifications
of parameters [9]. A major goal of the work described here is to bring the
power and concision of higher-order frame rules to reasoning about machine-
code programs. At first sight, it may seem unclear how to incorporate even
the first-order frame rule

{P} C {Q}
{P ∗R} C {Q ∗R}

into a system for reasoning about machine code. Firstly, the frame rule
is typically justified using a global property of commands with respect to a
semantics defined over partial heaps: if a command executes without faulting
in some heap, then it does so in any extension of that heap and moreover,
if it terminates it preserves the extension. Partial heaps in the semantics
model a built-in allocator, but, as in our previous work in low-level code
[6, 7], we do not wish to define the ground semantics (with respect to which
we interpret specifications) using partial heaps: whatever memory is in the
machine is there all the time, and the allocator is just another piece of code
to be specified and verified in our framework.

Secondly, the postcondition of a triple corresponds to the single exit
point of a first-order command. Machine code fragments do not have single
exits, or even a natural, local notion of terminating execution. We are
ultimately concerned with the observable behaviour of whole programs, and
do not wish to restrict ourselves to a form of specification that relies on the
non-observable, intensional property of reaching a particular intermediate
program counter value. We thus take our basic form of safety specifications
to be one that only involves a precondition: execution from a given address in
a state satisfying the precondition is safe. As Chlipala [16] observes, it is not
obvious how to attach a frame soundly to such a specification. We address
these problems by going beyond a shallow embedding of specifications of
individual program points, to an embedding of a fully-fledged specification
logic [34, 23], making the context within which code fragments are proved
explicit, and with a semantics that captures (but a surface notation which
hides) the way in which frames are preserved.
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The specification logic allows one to work with subtle patterns of in-
variant preservation, but does not impose particular forms of specification.
Rather, it provides building blocks from which more complex patterns, in-
cluding Hoare triples, may be built. The rich, well-behaved theory of the
core logic allows derived rules for new forms of specification to be expressed
and proved concisely.

We have formalized our specification logic in the Coq proof assistant,
and instantiated it for the particular case of a model for sequential x86
machine code. Our formalization also includes a range of reflective tactics
for solving separation entailments and performing specification logic proofs
at a high level of abstraction. This paper mainly discusses the logic in a
machine-independent way, but we use the x86 instantiation for examples
and motivation.

In summary, the contributions of this work include:

1. A separation logic for unstructured machine code that supports both
first- and higher-order frame rules.

2. Accounts of specification-level connectives including framing, a ‘read-
only’ frame, a ‘later’ modality and a full range of intuitionistic con-
nectives, all with good logical properties.

3. Examples of higher-level patterns, such as Hoare triples, and associ-
ated proof rules being defined smoothly within the logic.

4. An certified assembler, supporting convenient macro definitions with
internal label generation and natural derived proof rules, with exam-
ples including while-program constructs and procedure calling.

5. A semantics involving no instrumention or other modifications to the
underlying machine model. Memory can be total, and step-counting
and auxiliary variables happen only in the logic.

6. All this is formalized in Coq, with an instantiation for x86 machine
code and tactic support for high-level proving. The formalization is
available via the authors’ web pages.

2 Machine model

Our separation logic is not tied to any particular machine architecture, but
in order to illustrate its application we will be presenting examples from
32-bit x86, the architecture for which we have built a model in Coq.2 In
this section we present enough concrete detail of this model to support
subsequent sections.

2There is no particular reason for choosing x86 over x64 or ARM.
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We have modelled a subset of the 32-bit x86 instruction set, consider-
ing sequential execution only, but treating memory, registers and flags in
sufficient detail to obtain accurate specification of its behaviour.

Machine words and arithmetic We model n-bit machine words sim-
ply as n-nary tuples of boolean values, deploying an indexed type in Coq
for the purpose. The x86 architecture makes various use of 8-bit (BYTE),
16-bit (WORD), 32-bit (DWORD) and 64-bit (QWORD) values, and so nat-
dependent types in Coq are a boon to specification. Logical and arithmetic
operations are defined directly in terms of bits, although to prove useful
properties of arithmetic it proved handy to map words into arithmetic mod-
ulo 2n, making use of the ssreflect library for algebraic identities [20].

Machine state The state of the machine is described by a triple of regis-
ters, flags and memory state:

S = (reg→ DWORD)×
(flag→ {true, false, undef})×
(DWORD→ (BYTE ] {unmapped}))

Register state is a straightforward mapping from the x86’s nine core
registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP and EIP) to 32-bit
values. The EIP instruction pointer register is the x86’s program counter
and points to the next instruction to be decoded by the processor. Rather
than model the special EFLAGS as a monolithic register, we split it up into
boolean-valued flags. The undef value represents the undefined state in
which many instructions leave flags. Any dependence of execution on an
undefined state, such as in a conditional branch instruction, is then treated
as unspecified behaviour. Memory is modelled straightforwardly as 32-bit-
addressable bytes, with the possibility that any byte might be missing or
inaccessible. For now, we are not interested in finer distinctions such as read-
only or no-execute, though it would be a simple matter to incorporate these
notions. It is however important to note that the ‘partiality’ of memory has
nothing to do with the partial states of separation logic; indeed we could
choose to model and fully specify the x86 support for fault handling, using
the very same logic.

Instructions Any machine model must of course include a datatype of
instructions. The x86 instruction set is notoriously large and baroque but
by careful subsetting and factoring our datatype is made reasonably concise.
Figure 1 presents the instruction datatype, with only some names changed
for the purposes of this paper.
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Typeof d = if d then DWORD else BYTE

Scale = S1 | S2 | S4 | S8

MemSpec = Reg × option (NonSPReg × Scale)× DWORD

RegMem = RegMemR (r:Reg) | RegMemM(ms:MemSpec)

RegImm d = RegImmI (c:Typeof d) | RegImmR (r:Reg)

Src = SrcI (c:DWORD) | SrcM (ms:MemSpec) | SrcR(r:Reg)

DstSrc d =
| RR (dst :Reg) (src:Reg)
| RM (dst :Reg) (src:MemSpec)
| MR (dst :MemSpec) (src:Reg)
| RI (dst :Reg) (src:Typeof d)
| MI (dst :MemSpec) (src:Typeof d)

BinOp = ADC | ADD | AND | CMP | OR | SBB | SUB | XOR

UnaryOp = INC | DEC | NOT | NEG | POP

BitOp = BT | BTC | BTR | BTS

ShiftOp = ROL | ROR | RCL | RCR | SHL | SHR | SAL | SAR

Count = ShiftCL | ShiftImm (b:BYTE)

Condition = O | B | Z | BE | S | P | L | LE

Instr =
| UOP (d:bool) (op:UnaryOp) (dst :RegMem)
| BOP d (op:BinOp) (ds:DstSrc d)
| BITOP (op:BitOp) (dst :RegMem false)
| TEST d (dst :RegMem) (src:RegImm d)
| MOV d (ds:DstSrc d)
| SHIFTOP (d:bool) (op:ShiftOp) (dst :RegMem) (c:Count)
| MUL (src:RegMem)
| LEA (reg :Reg) (src:RegMem)
| JCC (cc:Condition) (dir :bool) (tgt :DWORD)
| PUSH (src:Src)
| POP (dst :RegMem)
| CALL (src:Src) | JMP (src:Src)
| RET (size:WORD)
| CLC | STC | CMC | HLT

Figure 1: Instruction datatype
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Instruction decoding The x86 instruction format is also complex, being
variable in length and not canonical: a single instruction can sometimes be
encoded in many ways. We have implemented an instruction decoder as a
partial function

decode : DWORD× (DWORD→ (BYTE ] {unmapped}))
⇀ DWORD× Instr

such that if decode(i,m) = (j, ι) then memory m from address i up to but
not including address j is defined and decodes to instruction ι. The decoder
reads memory incrementally, returning an undefined value if memory is in-
accessible or out of range, or if the contents do not describe an instruction
in our chosen subset. (There is no need to specify explicitly a maximum
instruction length.) Lifting decode to machine states, and threading the up-
dating of the EIP register through, yields a partial function in S⇀ S× Instr.

Instruction execution Instruction execution is given by a partial func-
tion on states S×Instr ⇀ S, which when composed with instruction decoding
gives rise to a small-step transition function on machine states step : S⇀ S.
When this function is undefined, it means that either a fault occurred (such
as the decoding of an illegal instruction or an access to unmapped memory),
or behaviour is simply unspecified (such as branching on an undefined flag).

3 Assertion logic

3.1 Partial states

Assertions in separation logic describe a subset, or ‘footprint’, of the ma-
chine state. For high-level imperative programs with dynamic allocation
this footprint consists of a subset of the heap. Indeed a common idiom is to
prove that some code starts or finishes with an ‘empty’ heap.

Here, there is no such thing: we have the whole machine at our disposal,
and we must carve out our own abstractions such as heaps or stacks, so the
footprint is simply that part of the state that we care about right now. We
also find it useful to use separation in describing the manipulation of registers
and flags, and so define partial states as follows, noting the resemblance to
the definition of total states in Section 2.

Σ = (reg ⇀ DWORD)×
(flag ⇀ {true, false, undef})×
(DWORD ⇀ (BYTE ] {unmapped}))

There is a partial binary operation ] on elements of Σ, defined when its
operands have disjoint domains on all three tuple components and yielding
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a tuple with the union of each of the maps. This makes (Σ,]) a separation
algebra [15]; i.e., a partial commutative monoid.

3.2 Assertion logic

An assertion is a predicate on partial states:

asn , P(Σ)

Since (Σ,]) is a separation algebra, its powerset asn forms a complete
boolean BI algebra, i.e., a model of the assertion language of classical sepa-
ration logic, where the connectives are defined in the standard way [15]:

∀x:T. P (x) ,
⋂

x:T P (x)

∃x:T. P (x) ,
⋃

x:T P (x)

P ⇒Q , {σ | σ ∈ P ⇒ σ ∈ Q}
emp , {([], [], [])}

P ∗Q , {σ | ∃σ1, σ2. σ = σ1 ] σ2 ∧ σ1 ∈ P ∧ σ2 ∈ Q}
P −∗ Q , {σ2 | ∀σ1. ∀σ = σ1 ] σ2. σ1 ∈ P ⇒ σ ∈ Q}

The propositional connectives (∧,>) and (∨,⊥) are just binary and nullary
special cases of ∀ and ∃ respectively. As usual, entailment is defined as
P ` Q , P ⊆ Q, and we write ` P for > ` P and P ≡ Q whenever P ` Q
and Q ` P .

There is a notion of points-to [35] for registers and for flags:

r 7_ v , {([r 7→ v], [], [])}
f 7_ b , {([], [f 7→ b], [])}

The meaning of the points-to assertion for memory, i..j 7→ v, depends on
the type of v; this is done using a type class [37] in our Coq implementation.
For BYTE and DWORD types, points-to means that memory from address
i to j contains that value. In these cases, j is uniquely determined to be
i + 1 or i + 4 respectively. For syntactic assembly instructions ι, it means
that the memory at i..j decodes to ι. In other words, decode(i,m) = (j, ι)
where m is the memory component of the state. Instruction encoding is not
unique, so more than one byte sequence in memory may decode to the same
ι. We write i 7→ v to mean ∃j. i..j 7→ v.

Discussion. Another option would have been to let the registers and flags
behave like the ‘stack’ in traditional separation logic [35] and not split them
over ∗. This is the approach taken by Shao et al. [14, 31] and Chlipala [16],
but it leads to the side condition on the frame rules that the program may not
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modify any registers mentioned by the frame. In a setting where programs
have multiple entry and exit points and may be self-modifying, it is not even
clear what that side condition means or how to check it, so we instead make
registers and flags split across ∗, following Myreen et al. [29].

4 Specification logic

4.1 Safety

We extend the single-step partial function step : S ⇀ S to a function run :
N×S⇀ S, where run(k, s) is the state that results from successful execution
of k instructions starting from state s.

Unlike the high-level languages typically modelled with Hoare logics, a
CPU has no natural notion of finishing a computation. It will run forever
until it either faults or loses power3. This means that we cannot apply the
standard Hoare-logic approach of describing a computation by a precon-
dition and a postcondition since there is no meaningful time to check the
postcondition.

Instead, specifications revolve around safety. We characterise the safe
machine configurations as the set of pairs (k, P ) : N × asn such that the
machine will run for at least k steps without faulting if started from a state
in P :

safe , {(k, P ) | ∀σ ∈ P. ∀s w σ. ∃s′ : S. run(k, s) = s′}
The relation s w σ states that all the mappings in σ are also found in s.
This is how we connect the partial states found in assertions to the total
states executed by the machine.

Example 1. It is safe to sit in a tight loop forever. That is,

∀k, i. (k, (EIP 7_ i ∗ i 7→ jmp i)) ∈ safe

The EIP register is the instruction pointer, and jmp i is an unconditional
jump to address i. The proof goes by induction on k. �

The number k plays the role of a step index [2]. We are ultimately
always interested in proving computations safe for an arbitrary number of
steps, but exposing an intermediate step index gives us a value on which we
can do induction.

As a running example, we will attempt to specify the unconditional jump
instruction. We can show that for all i, a, k,R,

(k,Q ∗R) ∈ safe⇒ (k + 1, P ∗R) ∈ safe where

P = (EIP 7_ i ∗ i 7→ jmp a) and

Q = (EIP 7_ a ∗ i 7→ jmp a)

3Even when it faults, it will typically reboot and so keep running, but this behaviour
is outside of our model.
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In words, if you need to show that P ∗R is a safe configuration for k+1 steps,
it suffices to show that Q∗R is safe for k steps. When a specification follows
this pattern, we can think of P as a precondition, Q as a postcondition, and
R as a frame.

The specification does not say that Q ∗ R will ever hold. Rather, it
requires that if Q ∗ R does hold, then we are in a safe configuration. This
can be seen as a CPS version of Hoare logic, which is appropriate for machine
code since nothing ever returns or finishes at this level [5, 38, 31].

We will refine this specification in later examples as we develop construc-
tions at higher levels of abstraction.

4.2 Specification logic

Reasoning directly about membership of safe is awkward since the step index
and frame are explicit and visible even though their use always follows the
same pattern. The solution is to instead consider safe as a formula in a
specification logic. We define a specification to be a set of of (k, P )-pairs
that is closed under decreasing k and under starring arbitrary assertions
onto P :

spec , {S ⊆ N× asn | ∀(k, P ) ∈ S, k′ ≤ k,R. (k′, P ∗R) ∈ S}

Intuitively, a specification S : spec describes how many steps the machine
has to execute before it no longer holds and what frames the execution will
preserve. This idea comes from the work of Birkedal, Torp-Smith and Yang
on higher-order frame rules [8, 10], and spec is essentially a step-indexed
version of Krishnaswami’s specification logic model [23].

The definition of spec is such that safe ∈ spec. Furthermore, spec is a
complete Heyting algebra and thus a model of intuitionistic logic. This gives
us a notion of entailment (` , ⊆) and the logical connectives (∀, ∃,∧,∨,>,⊥,⇒)
with the expected rules. The definitions of the connectives follow a standard
Kripke model:

∀x:T. S(x) ,
⋂

x:T S(x)

∃x:T. S(x) ,
⋃

x:T S(x)

S⇒ S′ , {(k, P ) | ∀k′ ≤ k. ∀R. (k′, P ∗R) ∈ S⇒ (k′, P ∗R) ∈ S′}

Again, the propositional connectives (∧,>) and (∨,⊥) are just binary and
nullary special cases of ∀ and ∃ respectively.

Notice how the semantics of⇒ requires arbitrary frames to be preserved
across the implication. This was not a choice we made – it is the only
definition that makes ⇒ be the right adjoint of ∧, and it falls out of giving
standard Kripke semantics.

We also get two new connectives: the later connective . and the frame
connective ⊗. We will define and discuss these in the next two subsections.
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They will enable us to state the specification of the jmp instruction from
Section 4.1 more succinctly:

. safe⊗ (EIP 7_ a ∗ i 7→ jmp a) ` safe⊗ (EIP 7_ i ∗ i 7→ jmp a) (1)

We can even factor out the duplicated part of the assertion and just
write

` (. safe⊗ (EIP 7_ a)⇒ safe⊗ (EIP 7_ i))⊗ i 7→ jmp a

or, informally, reading from right to left: ‘given that i points to instruction
jmp a, it is safe to execute with the instruction pointer set to i if it is later
safe to execute with the instruction pointer set to a’.

4.3 Frame connective

Following the literature on higher-order frame rules [8, 10, 23], we define the
frame connective ⊗ : spec× asn→ spec as

S ⊗R , {(k, P ) | (k, P ∗R) ∈ S}

This is also known as the invariant extension connective [8] because an
intuitive reading of S⊗R is that the computation described by S is allowed
to additionally depend on and maintain the invariant R. Note that, by
unpacking the definitions,

` safe⊗ P iff ∀k,R. (k, P ∗R) ∈ safe

relating judgements in the specification logic with the safety of executions.
Since we defined spec such that any S can be extended by any invariant, we
can immediately prove the higher-order frame rule:

Frame
S ` S ⊗R

The frame connective distributes over all other connectives, including .
and itself. That means, for example, that

⊗-⇒
(S⇒ S′)⊗R ≡ S ⊗R⇒ S′ ⊗R

It also interacts with emp and ∗ as follows.

⊗-emp
S ⊗ emp ≡ S

⊗-∗
S ⊗R1 ⊗R2 ≡ S ⊗ (R1 ∗R2)

Example 2. We can now start to see why Frame should be thought of as
a frame rule. Assume we have proved for some P and Q that

` safe⊗Q⇒ safe⊗ P.
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Then by Frame, ⊗-⇒ and ⊗-∗, we can derive

` safe⊗ (Q ∗R)⇒ safe⊗ (P ∗R).

Visually this looks like the standard frame rule, and it performs the same
function: to extend both pre- and post-condition by an invariant. �

The formula S⊗R is covariant in S with respect to entailment, meaning
that

S ` S′ ⊗-`
S ⊗R ` S′ ⊗R

The variance in R is more complicated and will be discussed in Section 7.1.

Example 3. To illustrate informally how Frame generalises the standard
first-order frame rule, consider a program in a high-level functional program-
ming language f1 : (unit → unit) → unit, whose specification is, for some
particular P , Q and R,

∀g. {P ∗R} g () {Q ∗R}⇒ {P ∗R} f1(g) {Q ∗R}

That is, f1 forwards the specification of g. Most likely, f1 simply applies its
argument to the unit value, but assume that it has been verified separately
and we should not see its implementation.

If we have g1 with specification {P} g1 () {Q}, we cannot immediately
apply f1(g1) since the specification does not match what f1 requires. How-
ever, we can apply the ordinary frame rule to deduce that g1 also has the
specification {P ∗R} g1 () {Q ∗R}, and then we can call f1(g1) if we are in
a state satisfying P ∗R.

Now instead consider an f2 with the specification

∀g. {P} g () {Q}⇒ {P} f2(g) {Q}

and a g2 with specification {P ∗R} g2 () {Q ∗R}. It is impossible with just
the standard frame rule to call f2(g2) since the specification of g2 cannot be
refined to match what is assumed by f2. But with the higher-order frame
rule, we can instead refine the specification of f2 to be

∀g. ({P} g () {Q}⇒ {P} f2(g) {Q})⊗R ≡
∀g. {P} g () {Q} ⊗R⇒{P} f2(g) {Q} ⊗R ≡

∀g. {P ∗R} g () {Q ∗R}⇒ {P ∗R} f2(g) {Q ∗R}

It is now compatible with our g2.
Without the higher-order frame rule, we would have had to either re-

verify the implementation of f2 or generalise the original specification of f2
to explicitly quantify over all possible frames that may be threaded through.
The latter option is essentially what the definition of spec does, but this is
invisible and implicit. �
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Using ⊗ to give concise and modular specifications to higher-order func-
tions is as important here as in any other separation logic, but that is not
our main reason for including ⊗. We do it because it allows our logic to
have a frame rule despite the program being unstructured and low-level.
Chlipala [16] uses explicit second-order quantification in place of a frame
rule, whilst Shao et al. [31, 14] have a frame rule that only applies to judge-
ments in a very restrictive specification logic; in particular, it does not apply
directly to specifications of function pointers.

4.4 Later connective

Just as we hide the explicit frames using ⊗, we hide the step indexes using
the later connective, .. This is a trick pioneered by Nakano [30] that exploits
the fact that we are never interested in the absolute number of steps but only
that they are the same or differ by exactly one between two specification
formulas. We define

.S , {(k, P ) | ∀k′ < k. (k′, P ) ∈ S}

Because any S : spec is closed under decreasing steps, an equivalent
definition is that (0, P ) ∈ .S for all P , and (k + 1, P ) ∈ .S iff (k, P ) ∈ S.
The closure under decreasing steps is expressed logically as the rule

.-weaken
S ` .S

As mentioned in Section 4.1, the purpose of step indexes is to serve as
a handle for induction. We can phrase the induction principle on natural
numbers using the following rule [3, 30], which is named for its similarity to
a corresponding rule in Gödel-Löb logic [3].

.S ` S
Löb` S

The Löb rule is a reformulation of the strong induction principle for
natural numbers: if (∀k′ < k. P (k′))⇒ P (k) for all k, then P (n) holds for
any n. It is a powerful rule in that it almost allows assuming the formula one
wants to prove, except that the assumption may only be used after taking
one step of computation.

Example 4. Recall the specification of a tight loop from Example 1. We
can now express and prove that inside the specification logic in just two
steps:

(1)
. safe⊗ (EIP 7_ i ∗ i 7→ jmp i)
` safe⊗ (EIP 7_ i ∗ i 7→ jmp i)

Löb` safe⊗ (EIP 7_ i ∗ i 7→ jmp i) �

The . connective distributes over every other connective we have men-
tioned except for ⊥ and existential quantification over empty types.
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Discussion. Like we saw in the rule for jmp (Equation (1)), every step of
computation allows us to relax our remaining proof obligation by adding a
.. For example, we could prove that

` (. . safe⊗ (EIP 7_ j)⇒ safe⊗ (EIP 7_ i))⊗ i..j 7→ (nop; nop) (2)

where nop is the no-operation instruction. There are two .’s on the ‘post-
condition’ of (2) because it takes two steps of computation to get there. It
turns out, however, that it is never useful to have more than one . applied
to a specification since the purpose of step indexes is to do induction, and
induction will always give us the necessary assumptions on the immediate
predecessor of the number of interest.

Furthermore, we have found that . is not necessary in code that only
moves forward. Löb induction only makes sense when verifying loops, and
a loop requires some form of backward jump unless we consider highly-
contrived self-modifying code. Therefore, in practice, we would state (2)
without any .-connective at all.

4.5 Read-only frame

The instruction rules we have discussed so far are too weak for some pur-
poses. Recall the rule for jmp:

` (. safe⊗ (EIP 7_ a)⇒ safe⊗ (EIP 7_ i))⊗ i 7→ jmp a

Because the meaning of i 7→ jmp a is only that the memory starting at i
decodes to jmp a, the rule would be satisfied in a semantics where the jmp
instruction not only performed the jump but also replaced its own machine
code in memory with a different byte sequence that also decoded to jmp a.
This would be a problem for programs whose code needs to stay unmodified;
e.g., to verify that the checksum of the code remains the same.

Our solution is to make this specification more precise by employing the
read-only frame connective, defined as

S �R , ∀σ ∈ R. S ⊗ {σ}.

A more precise specification for jmp is then

` (. safe⊗ (EIP 7_ a)⇒ safe⊗ (EIP 7_ i))� i 7→ jmp a

Intuitively, S � R requires S not only to preserve the truth of R but
to leave unmodified the underlying state fragment that made R true. The
state may be changed temporarily, just as R might be broken, as long as it
is restored at the end of the computation described by S.

Like for ⊗, there is a frame rule:

Frame-RO
S ` S �R
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The � connective does not distribute over every other connective like ⊗
does, but it does distribute over ∀,∧,>,⊗,�, .. It only distributes in one
direction over ∃ and ⇒:

(∃a. S(a)�R) ` (∃a. S(a))�R

(S⇒ S′)�R ` S �R⇒ S′ �R

The formula S�R is covariant in S and contravariant in R with respect
to entailment, meaning that

S ` S′ R′ ` R �-`
S �R ` S′ �R′

Another convenient property is that existential quantifiers can be moved
in and out of the frame:

S � (∃x. R(x)) ≡ ∀x. S �R(x)

These last two properties of � about variance and commuting with exis-
tentials do not generally hold for ⊗. The cases where they hold are discussed
in Sections 7.1 and 7.2. We explore further properties of � in Section 7.3.

Discussion. This connective is reminiscent of fractional permissions [12]
but more coarse-grained and light-weight. We mention connections to other
notions of weak ownership [22] in Section 9.

Our definition of � may not be the only good one, but we have examined
three other candidate definitions and found that the one given above had
the most convenient properties for our purposes. The candidates relate to
each other as follows.

∀R′ ` R ∗ >. S ⊗R′ `
∀R′ ` R. S ⊗R′ `

∀σ ∈ (R ∗ >). S ⊗ {σ} ≡
∀σ ∈ R. S ⊗ {σ}

5 High-level assembly code

5.1 Basic blocks

Using safe and the connectives discussed so far, we can specify code with mul-
tiple entry points and exit points, jumps to code pointers, self-modification,
and so on. In practice, though, most code is much simpler. For code that
behaves like a basic block, with control flow always coming in at the top and
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going out at the bottom, we can describe its behaviour with a Hoare triple,
defined in the specification logic as:

{P} c {Q} , ∀i, j. (safe⊗ (EIP 7_ j ∗Q)⇒
safe⊗ (EIP 7_ i ∗ P ))� i..j 7→ c

Example 5. The instruction mov r, v (move literal v to register r) can be
specified as ` {r?} mov r, v {r 7_ v}, where r? is shorthand for ∃v. r 7_ v.
This is much more compact and readable than writing the specification in
terms of safe. �

This triple satisfies the structural rules we expect from a Hoare triple in
separation logic:

P ` P ′ S ` {P ′} c {Q′} Q′ ` Q
S ` {P} c {Q}

S ` ∀x. {P (x)} c {Q}
S ` {∃x. P (x)} c {Q}

S ` {P} c {Q}
S ` {P ∗R} c {Q ∗R}

The frame rule for the triple follows from Frame and the fact that ⊗
distributes into the triple:

⊗-Triple{P} c {Q} ⊗R ≡ {P ∗R} c {Q ∗R}

There is no rule of conjunction for the triple since this would be unsound
in the presence of Frame [8].

Discussion. This kind of triple is certainly not the only useful one. One
could also adapt the position-indexed triples of Myreen and Gordon [29]
to this setting, allowing use of the triple metaphor in specifying code with
multiple entry and exit points. It would be a matter of taste whether this
seemed more convenient to work with than reasoning directly in terms of
safe.

The triple defined here can be thought of as encoding a very simple
calling convention: inlining; i.e., concatenation of code. We envision defining
triples for other conventions as needed and proving similar properties about
them. See Section 5.5 for another example.

It is a valid question to ask why there is no . on the postcondition part
of the triple so it would read . safe⊗ (EIP 7_ j ∗Q). It would give stronger
specifications for single instructions like in Example 5, but as discussed in
Section 4.4, it would also be unnecessary since control flow always moves
forward in a triple. We will also see in Section 5.3 that there are useful
values of c that take no computation steps.
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5.2 Rules for x86 instructions

With a variety of logical building blocks in place, we can give appealingly
simple rules for x86 instructions. These split into instructions that do not
touch the instruction pointer, for which we can use the Hoare-triple form,
and control flow instructions, for which we describe their effect on the in-
struction pointer explicitly.

Example 6. The following rule for ‘add register indirect with offset’ is a
typical instance. Here d is a literal DWORD offset, and addition of two 32-
bit values produces a pair (c, v) where v is the 32-bit (truncated) result, and
c is the carry into bit 32.

` {r1 7_ v1 ∗ OF? ∗ SF? ∗ ZF? ∗ CF? ∗ PF?}
add r1, [r2 + d]
{r1 7_ v ∗ OF 7_ ¬(msb v1 ⊕msb v2)⊕msb v
∗ SF 7_ msb v ∗ ZF 7_ (v = 0) ∗ CF 7_ c ∗ PF 7_ lsb v}

⊗ (r2 7_ w ∗ w + d 7→ v2)
where v1 + v2 = (c, v)

The ¬ and ⊕ operators are boolean negation and xor respectively. The
instruction affects flags OF, SF, ZF, CF and PF whose values initially are
arbitrary (F? is shorthand for ∃f. F 7_ f , where f may be undef). Notice
the framing of invariant registers and memory. �

Example 7. For the jump-if-zero instruction, we specify two ‘post-conditions’,
the first for when the branch is taken, and the second for when it isn’t.

` (. safe⊗ (b ∧ EIP 7_ a ∗ ZF 7_ b) ∧
safe⊗ (¬b ∧ EIP 7_ j ∗ ZF 7_ b)
⇒ safe⊗ (EIP 7_ i ∗ ZF 7_ b))
� i..j 7→ jz a

Note the use of the later connective when the (possibly backwards) branch
is taken. �

Our approach is to give a very general specification to each instruction
and then on top of that provide convenience definitions for common cases. In
a sense, our rules are therefore just a logical reformulation of the operational
semantics, which may seem a bit unimpressive but turns out to be a strong
platform on which to build higher-level layers of abstraction.

5.3 Instruction encoding and assembly language

We have implemented an encoder for syntactic instructions, and it has the
property that

i..j 7→ encode(i, ι) ` i..j 7→ ι
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That is, if the memory at i..j contains the sequence of bytes encode(i, ι),
then that memory will decode to the instruction ι. The instruction decoder
referred to here is the same one that is part of the operational semantics for
the machine. The encode function takes i as parameter because the encoding
of x86 instructions is not generally position-independent.

This encoder is the main ingredient in our assembler : a certified and
executable Coq function that takes a program as input and produces a list
of bytes as output. A program is a value in the following inductive definition.

p ::= (ι) | skip | p; p | l: | LOCAL l; p

That is, a program is essentially a list of instructions with label markers
‘l:’ interspersed. A label l may be declared local to program p with the
LOCAL l; p construction. A label is simply a memory address; i.e., a 32-bit
word, and it can therefore be used as an argument to jump instructions.
The following is a closed program that loops forever.

LOCAL l; l: jmp l

The LOCAL constructor in our Coq implementation has type (DWORD→
program) → program, so writing LOCAL l; p is just syntactic sugar for
LOCAL(λl. p(l)). The benefit of modelling label scopes with function spaces
is that Coq handles all aspects of label naming transparently, including the
necessary capture-avoidance and α-conversion. The downside is that it is
not viable to statically rule out ill-formed programs, such as programs that
place the same label more than once.

The assembler function, assemble, is partial and maps an address and a
program to a sequence of bytes. It is undefined if the program is ill-formed.
Where defined, it has the correctness property that

i..j 7→ assemble(i, p) ` i..j 7→ p

Here, i..j 7→ p is defined recursively as follows.

i..j 7→ (ι) , i..j 7→ ι

i..j 7→ skip , i = j ∧ emp

i..j 7→ p1; p2 , ∃i′. i..i′ 7→ p1 ∗ i′..j 7→ p2
i..j 7→ LOCAL l; p , ∃l. i..j 7→ p(l)

i..j 7→ l: , i = j = l ∧ emp

Recall that the definition of triples {P} c {Q} in Section 5.1 did not
require c to have a particular type; the definition and its rules are valid for
any c that can occur on the right of a points-to. Thus, we can put a program
p in a triple, and it turns out that the following rules hold.

` {P} skip {P}
S ` {P} p1 {Q} S ` {Q} p2 {R}

S ` {P} p1; p2 {R}
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S ` {P} ι {Q}
S ` {P} (ι) {Q}

S ` ∀l. {P} p(l) {Q}
S ` {P} LOCAL l; p {Q}

There is no useful rule for the case of l: in a triple.

Example 8. We cannot specify jmp with a triple in any useful way, but we
can specify the special case of a tight loop shown above:

` {emp} LOCAL l; l: jmp l {⊥}
The proof is by first applying the triple rule for LOCAL, then unfolding the
definition of the triple and applying the result of Example 4. �

5.4 Assembly macros

A useful assembly language has not only labels but also macros; i.e., param-
eterised definitions that expand to instruction sequences when invoked. We
get macros almost for free since assembly programs are written and parsed
inside Coq and can be intermixed with all the features of its term language.
This includes let-bindings, fixpoint computations, custom syntax, coercions,
overloading and other features of a modern dependently-typed programming
language.

An example of a very useful macro is the following definition of while(p1, t, b, p2),
where p1 is a loop test, p2 is a loop body, t encodes the combination of pro-
cessor flags to be branched on, and b is a boolean that indicates whether the
test should be inverted.

while(p1, t, b, p2) , LOCAL l1, l2;
jmp l1;

l2: p2;
l1: p1;

jcc t, b, l2

The jcc instruction is the general conditional jump on x86. We see here
how LOCAL lets us declare labels that will be fresh for every invocation of
the while macro. Real-world macro assemblers also have that functionality,
although the scope is usually tied to the nearest named macro or global
label. Our Coq notations for assembly syntax, including LOCAL, are chosen
to be compatible with MASM, the Microsoft assembler.

Macros such as while give us the usual convenience of not having to write
similar code many times. But even better, it lets us avoid writing similar
proofs many times. If the body and test can be specified in terms of a triple,
then the loop as a whole also has a triple specification:

S ` {P} p1 {∃b′. I(b′) ∗ cond(t, b′)}
S ` {I(b) ∗ cond(t, b)} p2 {P}

While
S ` {P} while(p1, t, b, p2) {I(¬b) ∗ cond(t,¬b)}
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Here, cond(t, b) translates t, of type Condition from Figure 1, to an assertion
that tests the relevant flags. For example, cond(Z, b) = ZF 7_ b, where ZF is
the zero flag. There are two loop invariants, P and I, representing the state
before and after executing the test p1 since this may have side effects.

The proof of the While rule involves .-operators and the Löb rule, but
these technicalities do not leak out into the rule statement.

With if and while macros and the sequence operator on programs, we
have the building blocks to easily write and verify programs with structured
control flow. These constructs also facilitate using our assembly language
as the target of a verified compiler from a structured language, which is
something we hope to investigate more in future work.

5.5 Procedure calls

The triple {P} c {Q} encodes and abstracts the often-occurring program-
ming pattern of structured control flow. Another crucial pattern to capture
is procedure calls. We will here show the theory of a very simple calling
convention [29]: store the return address in register EDX and jump to the
procedure entry point. The following macro calls the procedure whose code
is at address f .

call f , LOCAL iret;
mov EDX, iret;
jmp f ;

iret:

The calling convention does not specify how to pass arguments or return
values; this is instead part of individual procedure specifications. A more
realistic calling convention would maintain a stack of arguments and return
addresses to allow deep call hierarchies and reentrancy, but this would clutter
our examples with arithmetic side conditions because the stack has to be
finite [29].

The following definition describes the behaviour of a procedure starting
at f with precondition P and postcondition Q.

f 7→{P}{Q} , ∀iret. safe⊗ (EIP 7_ iret ∗ EDX? ∗Q)⇒
safe⊗ (EIP 7_ f ∗ EDX 7_ iret ∗ P )

Recall that EDX? is shorthand for ∃v. EDX 7_ v. This definition satisfies the
usual rules for a triple-like formula, including

⊗-Proc
f 7→{P}{Q} ⊗R ≡ f 7→{P ∗R}{Q ∗R}

In contrast with the triple defined in Section 5.1, this definition of a
procedure specification does not mention the code stored at f . The code
should be mentioned separately from its behaviour such that the footprint
of the code covers both the caller and the callee.
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The rule for calling a procedure looks fairly standard:

Call
.f 7→{P}{Q} ` {P} call f {Q} ⊗ EDX?

It reveals that EDX is overwritten as part of the calling convention. The .
modality on the premise, together with Löb, permits recursion [3].

Example 9. This is the first of three examples to illustrate independent
verification of caller and callee. Consider the following definition of a pro-
gram that calls some procedure at f twice:

pcaller(f) , call f ; call f

If the intention with this program is to compose it with a procedure that
satisfies

Scallee(f) , ∀a. f 7→{EAX 7_ a}{EAX 7_ a+ 2},
then we can specify the caller as

Scallee(f) ` {EAX 7_ a} pcaller(f) {EAX 7_ a+ 4} ⊗ EDX?

We can prove this specification directly from the program sequencing rule
and Call. No . connective is put on the assumption since no recursion is
intended. �

If a procedure body p is structured and returns at its very end, we can
prove its specification through the following rule.

S ` {P} p {Q} � EDX?
Body

S ` f 7→{P}{Q} � f 7→ (p; jmp EDX)

In words, this means that calling f behaves as (P,Q) when in memory where
the program (p; jmp EDX) is at address f , assuming we can prove the given
triple, which is allowed to access EDX as long as it restores its value in the
end.

Example 10. The following program almost satisfies Scallee as defined in
Example 9.

pcallee , inc EAX; inc EAX; jmp EDX

We say almost because the inc instruction affects the status flags of the
CPU as a side effect. The caller is not interested in the flags, but they have
to be in the specification of pcallee since they do get affected. Let flags be the
assertion that all flags are of some (existential) value. Then we can prove

` Scallee(f)⊗ flags� f 7→ pcallee.

The proof is by applying Body, whose conclusion matches the above
specification after rewriting by ⊗-Proc. �
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The next example demonstrates how to compose a caller and a callee,
even if the callee has a larger footprint than what the caller assumes. This
shows how to execute the informal reasoning from Example 3 in our logic.

Example 11. We can now compose the implementations of the caller from
Example 9 and the callee from Example 10 to obtain the following closed
program. We arbitrarily choose to place the callee in memory before the
caller.

pmain(entry) , LOCAL f ; f : pcallee; entry : pcaller(f)

We can give the following specification to this program, which says that
the code between entry and j will increment EAX by 4 and step on EDX and
the flags.

` (safe⊗ (EIP 7_ j ∗ EAX 7_ a+ 4)⇒
safe⊗ (EIP 7_ entry ∗ EAX 7_ a)

)⊗ (EDX? ∗ flags)� (i..j 7→ pmain(entry))

The crucial step in proving this specification is to satisfy the caller’s
assumption, Scallee, with the callee specification, which is essentially Scallee⊗
flags. The former entails the latter, but here we would need the entailment
to go the other way. Instead, we exploit that Frame is a higher-order frame
rule [9] and lets us frame an assertion on to the left and right side of an
entailment simultaneously. This is allowed by the rules ⊗-` and �-` from
Sections 4.3 and 4.5. Abbreviating

Scaller(f) , ∀a. {EAX 7_ a} pcaller(f) {EAX 7_ a+ 4} ⊗ EDX?,

we can derive
Ex. 9

Scallee(f) ` Scaller(f) ⊗-`
Scallee(f)⊗ flags `
Scaller(f)⊗ flags

�-`
Scallee(f)⊗ flags� f 7→ pcallee `
Scaller(f)⊗ flags� f 7→ pcallee

We know from Example 10 that ` Scallee(f) ⊗ flags � f 7→ pcallee, so by
transitivity of ` we conclude ` Scaller(f)⊗ flags� f 7→ pcallee. From this, it
is straightforward to derive our desired specification for pmain. �

The preceding example showed how to use Frame as a second-order
[9], or, hypothetical [32] frame rule. The procedure involved was first-order
at run-time, though. The following example involves a proper higher-order
procedure; i.e., a procedure that takes a pointer to another procedure as
argument.

Example 12. The simplest example of a higher-order procedure is ‘apply’,
which in a functional programming language would be defined as

apply(g, x) = g(x).
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In our set-up, an apply procedure that takes its g argument in register
EBX is implemented simply as

papply , jmp EBX.

Its specification reflects how it forwards the behaviour (P,Q) of g:

`
(
g 7→{P ∗ EBX?}{Q} ⇒
f 7→{P ∗ EBX 7_ g}{Q}

)
� f 7→ papply. �

6 Practical verification

We have used our Coq development not only to build a machine model and
to validate the logic developed in this paper; it is also an environment for
building and verifying actual machine-code programs.

In this section we describe the Coq tactic support that we have developed
for making machine code verification manageable, and present a slightly
larger example of assembly language (seven instructions!) in order to give a
flavour of the Coq proof of its correctness.

6.1 Example: memory allocation

We illustrate the use of the logic, rules, and Coq tactics with a slightly more
challenging example: the specification of a memory allocator and its simplest
possible realisation, the bumping of a pointer and checking it against a limit.

Its specification is as follows, parameterized by the number of bytes n to
be allocated and an address fail to jump to on failure.

allocSpec(n, fail , inv , code) , ∀i, j.
(safe⊗ (EIP 7_ fail ∗ EDI?) ∧
safe⊗ (EIP 7_ j ∗ ∃a. (EDI 7_ a+n) ∗ (a .. a+n 7→ ))⇒
safe⊗ (EIP 7_ i ∗ EDI?))
⊗ (ESI? ∗ flags ∗ inv)� (i..j 7→ code)

The specification is framed by an assertion that register ESI is used as scratch
storage, flags are updated arbitrarily, and an internal invariant inv is main-
tained. The latter might be the well-formedness of some representation of
free lists, or in our trivial allocator, simply a pair of pointers.

The calling convention is ‘inline’, in other words, the allocator is just a
macro consisting of assembly in code. In Section 6.5, we will wrap a slightly
less trivial calling convention around it.

Control either drops through, if successful, or branches to address fail ,
if memory cannot be allocated. On success, the allocator leaves an address
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a in EDI that is just beyond the n bytes of memory that were allocated; on
failure, EDI is trashed.

Perhaps surprisingly, even a bump-and-check implementation consists of
seven instructions:

allocImp(info, n, fail) , mov ESI, info;
mov EDI, [ESI];
add EDI, n;
jc fail ;
cmp [ESI + 4], EDI;
jc fail ;
mov [ESI], EDI.

The implementation invariant inv is the following:

inv(info) , ∃base, limit .
info 7→ base ∗ (info + 4 7→ limit) ∗ (base .. limit 7→ ).

In other words, at address info there is a pair of pointers base and limit that
bound a piece of mapped memory.

6.2 Applying instruction rules

During a proof, we typically keep the goal in the form

Sctx ` (S⇒ safe⊗ P )�R.

The specifications discussed in this paper are easy to put into that form
by applying distributivity rules for ⊗ and decurrying nested implications,
and we have implemented a tactic to do this automatically. Typically, R
describes the code to be executed, and P describes the instruction pointer
and the remaining state that will go into proving the precondition of the
next instruction.

We may use the full range of specification-logic rules on this goal, but
eventually we will want to apply the lemma appropriate for the code that
EIP is pointing to in P . We assume that the lemma has the same form as
the goal and apply a lemma through the following rule.

S′ctx ` (S′⇒ safe⊗ P ′)�R′
Sctx ` S′ctx
P ` P ′ ∗RP

R ` R′ ∗ >
Sctx ` (S⇒ S′ ⊗RP)�R

SpecApply
Sctx ` (S⇒ safe⊗ P )�R

The top premise is the lemma to be applied, and the bottom premise is the
remaining proof obligation that describes the symbolic state after having
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applied the lemma. If the lemma is an instruction rule, the three middle
premises correspond to satisfying its preconditions at the level of specifica-
tions, data memory and code memory respectively. The latter two can be
dealt with by our entailment checker, described in the next subsection.

6.3 Assertion entailment solving

Much of the activity in a formal separation logic proof is proving entailment
between assertions. This happens every time a precondition needs to be
discharged, and if it is not automated, the proofs will drown in the details
of fragile manual context manipulation and rewriting modulo associativity
and commutativity.

Typically, we are given a description of the current state P and a precon-
dition P ′, and we must show P ` P ′∗R for our own choice of frame R, which
represents all the left-over state that was not consumed by the precondition
and can therefore be framed out. Our approach to this automation is similar
to other separation-logic tools [16, 4]: if P and P ′ consist only of ∗, emp
and atomic assertions, we iterate through the conjuncts of P ′, attempting
to unify each with a conjunct found in P and let the two cancel out.

Typically, P ′ is full of holes corresponding to universally-quantified vari-
ables that have yet to be instantiated. The holes are represented in Coq as
unification variables, which are identifiers that will receive a value upon be-
ing unified with a subformula from P . Several subformulas of P may unify,
but typically only one choice will permit the entailment as a whole to be
solved. For example, we may be proving

EAX 7_ i ∗ j 7→ 2 ∗ i 7→ 1 ` EAX 7_ U1 ∗ U1 7→ U2 ∗ >,

where U1 and U2 are unification variables of type DWORD. If our algorithm
should attempt to unify the atom U1 7→ U2 with the atom j 7→ 2, it will
succeed, but the remaining proof obligation will be

EAX 7_ i ∗ i 7→ 1 ` EAX 7_ j ∗ >

The algorithm succeeds even if it did not solve the goal entirely, leaving the
rest to be proved interactively, but in this case there is no solution for the
remaining part of the goal.

Rather than try to support backtracking, which does not combine well
with interactive proof, we make the algorithm greedy but predictable: sub-
formulas of P ′ are unified from left to right. In our current example, this
would first fix the choice of U1 to be i, and the second conjunct of P ′ would
therefore become i 7→ U2, which rules out the bad unification choice from
before.

There is of course no guarantee that this always works, but we have
found that it virtually always works in practice as long as preconditions
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are written with this left-to-right order in mind. This happens naturally
since it is also more readable for humans who read from left to right. If the
algorithm should still fail, it remains possible to manually instantiate the
unification variables.

The entailment solving algorithm is implemented with a hybrid ap-
proach, where the unification is done by Coq’s built-in higher-order uni-
fication engine, while the cancellation of identical terms is done with proof
by reflection [17], which has good performance.

If an entailment has existential quantifiers on the left-hand side, we can
apply the rule

∀x. (C[P (x)] ` Q)

C[∃x. P (x)] ` Q
where C is formula with a hole that contains only ∗-connectives in the path
from the root to the hole. This lets us effectively move the quantified variable
into the Coq variable context.

If an entailment has existential quantifiers on the right-hand side, we
will eventually need to instantiate them with witnesses. This can be done
with the rule

∃x. (P ` C[Q(x)])

P ` C[∃x. Q(x)]

We immediately apply the rule, but we instantiate x with a unification
variable, which in practice defers instantiation until a unification forces it to
happen as described above.

We have extended the tactic for moving quantifiers into the context so
it also works on specification-logic entailments. For example, given the goal

S′ ` ∀x1. S⇒ safe⊗ (∃x3. P (x1, x3))� (∃x2. R(x2)),

the extended tactic will introduce x1, x2 and x3 into the Coq variable context
and leave the new goal

S′ ` S⇒ safe⊗ P (x1, x3)�R(x2).

The rules allowing x2 and x3 to be pulled out are given in Sections 4.5 and
7.2 respectively.

6.4 Proving the allocator

Correctness consists of proving the following, for any info, n, fail .

` allocSpec(n, fail , inv(info), allocImp(info, n, fail)).

Here is a fragment of the Coq proof script that deals with the second in-
struction in the implementation. (We make use of ssreflect extensions to
standard Coq tactic notation [20].)
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(* mov EDI, [ESI] *)

rewrite {2}/inv. specintros => base limit.

specapply MOV_RM0_rule.

- by ssimpl.

For this instruction, almost everything is handled automatically. The initial
rewrite simply unfolds the invariant inv to expose the existential quanti-
fiers. The custom tactic specintros pulls the existentially-quantified vari-
ables from deep within the goal to introduce them into the Coq context.
The tactic ‘specapply l’ will first normalise both the goal and lemma l
to have the form required by the SpecApply rule from Section 6.2. It
will then invoke SpecApply with l as the first premise. In this case, l is
MOV_RM0_rule, the rule for instructions of the form mov r1, [r2]. The sec-
ond and fourth premises are trivial, leaving only the precondition of the
mov rule as a subgoal. This can be discharged by our ssimpl tactic, which
implements entailment checking as described in Section 6.3.

In fact none of the instructions needs more than four lines of proof, and
we hope to reduce this further through the use of additional lemma and
tactic support once we have more experience with proving.

6.5 Wrapping the allocator

Having verified a component, such as the allocator, it is reasonably straight-
forward to use to the logic to verify higher-level abstractions in a modular
way. As an example, we show the wrapping of the allocator in a procedure
for consing onto a list.

We start with the inductive ‘list segment’ assertion of separation logic
(originally due to Burstall [13]):

listSeg(p, e, vs) ,
{
∃q. (p 7_ v) ∗ (p+4 7_ q) ∗ listSeg(q, e, vs ′) if vs = v :: vs ′

p = e ∧ emp otherwise

Here, vs is a list of DWORDs and the assertion says that memory contains
a linked list starting at p and ending at e with elements given by vs. A
possible specification for our cons function is

consSpec(r1, r2, info, i, j, code) , ∀h, t, e, vs.

(i 7→ {r1 7_ h ∗ r2 7_ t ∗ listSeg(t, e, vs) ∗ EDI?}
{r1? ∗ r2? ∗ ((EDI 7_ 0 ∗ listSeg(t, e, vs)) ∨

(∃q. EDI 7_ q ∗ listSeg(q, e, h :: vs))}
)⊗ (ESI? ∗ flags ∗ inv(info))� (i..j 7→ code)

specifying a procedure that is passed a value h in r1 and a pointer to a list
starting at t in r2. On return, EDI is either zero, and the original linked list
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is preserved, or EDI points to a linked list segment ending at e with h added
as the new head element. An implementation is given by

cons(r1, r2, info) , LOCAL fail ; LOCAL succeed ;
allocImp(info, 8, fail);
sub EDI, 8;
mov [EDI], r1;
mov [EDI + 4], r2;
jmp succeed;

fail :
mov EDI, 0;

succeed :
jmp EDX

The proof that for any r1, r2, info, i and j,

` consSpec(r1, r2, info, i, j, cons(r1, r2, info))

is entirely modular, relying on the Body rule and the previous result that
allocImp meets allocSpec.

7 Properties of the frame connectives

We now return to the frame connective, ⊗, defined in Section 4.3. In previous
literature on higher-order frame rules [8, 9, 10, 33], the R in S ⊗R tends to
be inert and does not interact with its environment until it has distributed
inwards across all connectives and has been merged into the pre- and post-
conditions of a triple. Only at that point will the rule of consequence and
the existential rule for triples be used to interact with R.

Since we only see triples in certain special cases, as described in Sec-
tion 5.1, we are interested in specification-level generalisations of the con-
sequence and existential rules, just as Frame is a specification-level gener-
alisation of the frame rule for triples. The use of these generalised rules in
practice is similar to their counterparts in ordinary Hoare logic.

7.1 Specification-level rule of consequence

The standard Hoare rule of consequence states that {P} c {Q} is contravari-
ant in P and covariant in Q with respect to entailment. Analogously, the
generalisation we present here describes the variance of S⊗R in R. It turns
out that S⊗R is not always covariant nor always contravariant in R; it can
be either, depending on S. We encode this as two predicates on S:

frame+(S) , ∀P,Q. (P ` Q)⇒ (S ⊗ P ` S ⊗Q)

frame−(S) , ∀P,Q. (P ` Q)⇒ (S ⊗Q ` S ⊗ P )
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These definitions directly give rise to our two specification-level rules of
consequence:

frame+(S) P ` Q
S ⊗ P ` S ⊗Q

frame−(S) P ` Q
S ⊗Q ` S ⊗ P

All we did so far was to switch the problem to proving frame+(S) or
frame−(S) for particular S, but it turns out that there is a very schematic
set of rules for this. Writing f : (V1, . . . , Vn) −→ V to mean

∀S1, . . . , Sn. frameV1(S1) ∧ . . . ∧ frameVn(Sn)
⇒ frameV (f(S1, . . . , Sn)),

we can tabulate the rules for various connectives concisely:

safe : −
>,⊥ : + and −

.,⊗,�, ∀, ∃ : + −→ + and − −→ −
∧,∨ : (+,+) −→ + and (−,−) −→ −
⇒ : (−,+) −→ + and (+,−) −→ −

Notice that all the logical connectives preserve either covariance or con-
travariance of their operands (modulo the flip that happens for implication),
but there is no way to combine the variances.

Example 13. For all P1 and P2, frame−(.safe⊗ P1 ∧ safe⊗ P2). �

Example 14. For all P , frame+(safe⊗ P ⇒⊥). �

There are no definitions analogous to frame+(S) and frame−(S) for the
read-only frame connective since S�R is always contravariant in R. But as
we will see in Section 7.3, the frame family of predicates plays an important
role for � too.

It is no coincidence that these rules for variance have not been studied
in the previous literature. There is no rule for frame+ or frame− on Hoare
triples, and in a logic where the only atomic specifications are the triple
and >,⊥, then any S that satisfies frame+(S) or frame−(S) is equivalent to
either > or ⊥.

7.2 Specification-level existential rule

The existential rule in Hoare logic allows moving an existential quantifier
from the precondition of a Hoare triple out into the logical variable con-
text. Just as we have generalised the frame and consequence rules, we can
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generalise the existential rule to work with other specifications than triples.
Using the same approach as in Section 7.1, we define

frame∃(S) , ∀P.
(
(∀x. S ⊗ P (x)) ` S ⊗ (∃x. P (x))

)

We can then state the specification-level existential rule as

frame∃(S) S′ ` ∀x. S ⊗ P (x)

S′ ` S ⊗ (∃x. P (x))

The following rules, using the notation introduced in Section 7.1, let us
schematically prove frame∃.

safe : ∃
.,⊗,�, ∀ : ∃ −→ ∃

∧ : (∃, ∃) −→ ∃
⇒ : (−,∃) −→ ∃

The natural converse of frame∃(S), with the entailment in the other
direction, is equivalent to frame−(S). This gives an intuitive justification of
the rule for implication above.

Example 15. For all P, c,Q, we have frame∃({P} c {Q}). This is seen by
unfolding the definition of the triple and applying the above rules. �

7.3 Further properties of read-only frame connective

The read-only frame and the frame connectives are interchangeable in cer-
tain cases:

1. For singleton frames: S � {σ} ≡ S ⊗ {σ}.

2. If frame∃(S) then S �R ` S ⊗R.

3. If frame−(S) then S ⊗R ` S �R.

Whereas two adjacent frame connectives can always be merged and split
by the ⊗-∗ rule, this is not always possible for the read-only frame connec-
tive:

1. If frame∃(S) then S � (R ∗R′) ` S �R�R′.

2. Unconditionally, S �R�R′ ` S � (R ∗R′).

8 Related work

This paper builds on previous work on higher-order frame rules, assembly-
language verification and guarded recursion.
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Separation logic for assembly code. Our work shares many goals with
the work of Myreen et al. [29, 28]. They have built a separation logic for
subsets of ARM and x86 in the HOL4 proof assistant. Their logic emphasises
total correctness, but since assembly-language programs do not terminate,
total correctness does not mean guaranteed termination as it usually would.
Instead, a postcondition Q means that execution will eventually reach a
machine state in Q. This makes specifications much more intensional than in
our case, preventing, for example, relocating and patching (or interpreting)
code in memory in an externally-unobservable way unless this has been
somehow explicitly allowed by the specification.

The logic of Myreen et al. lacks labels in assembly programs, relying
instead on explicit instruction address arithmetic. Their entire specification
logic takes place in a generalised Hoare triple with multiple pre- and postcon-
ditions and offset transformer functions. This is general enough to support
jumps, function calls and self-modifying code, but it remains a triple and is
thus restricted to what can be expressed with preconditions, postconditions
and code blocks.

The CAP family of logics from Shao et al. are also Hoare logics for low-
level code, all verified in Coq. The family includes XCAP [31], GCAP [14],
SCAP and ISCAP [40]. Unfortunately, neither of them is a generalisation
of any of the others, so each has its strengths and weaknesses. All except
GCAP and SCAP have high-level heap manipulation commands such as
allocation or function calls built into the machine semantics.

All except GCAP have the program residing in a map from labels to
instruction sequences, which is a high level of abstraction and cannot support
treating code as data. As Myreen [28] and hopefully this paper have shown,
it is not difficult to treat code as data and support function pointers if the
logic is fundamentally set up for it. In contrast, GCAP supports it with some
awkwardness by attempting to impose the map-from-labels abstraction on
top of what is actually happening in the machine.

Affeldt et al [1] have formalized in Coq a separation logic for first-order
MIPS assembly code, extending a simpler logic due to Saabas and Uustalu
[36], and applied it to verifying provable security of implementations of cryp-
tographic primitives.

Chlipala’s Bedrock project [16] is also a Coq framework for verifying low-
level code with separation logic. Like our framework, Bedrock has ‘while’
and ‘if’ macros and associated proof principles for common patterns of struc-
tured code. Chlipala emphasises automated verification, and the program
logic is therefore not very expressive. There is no frame rule, so frames
are instead passed around explicitly in procedure specifications. Chlipala
explains the problem with defining a frame rule for programs with unstruc-
tured jumps; here we have demonstrated how this may be solved.

None of the logics discussed above feature a higher-order frame rule.
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Higher-order frame rules. The frame rule was extended by O’Hearn
et al. [32] to the hypothetical frame rule, which allowed framing invariants
onto a context of procedure specifications in addition to the triple under
consideration. This allowed greater modularity in separate verification of
caller and callee, but it still required programs to have structured control
flow.

The higher-order frame rule was proposed by Birkedal et al. and used
in a separation-logic type system for a programming language with higher-
order functions and ground store [8, 9, 10]. It has later been extended to
languages with higher-order store and used by Krishnaswami [23] and by
Pottier [33]. In all cases, it has been for high-level functional programming
languages, whereas we have applied it to machine code. We believe we are
the first to complement the higher-order frame rule with a higher-order rule
of consequence and a higher-order existential rule (Sections 7.1 and 7.2).

Typed assembly language. The work of Appel et al. on typed assem-
bly language and foundational proof-carrying code has demonstrated that
step indexing [2] is a viable technique for describing the behaviour of low-
level programs. The ‘Very Modal Model’ paper [3] popularised Nakano’s
later operator, which we also use here, and demonstrated its applicability
to assembly code.

The work on typed assembly language focuses on safety of reference types
coming from high-level languages and does not attempt to verify code for
full functional correctness as we do.

9 Future work

The logic described in this paper will form the foundation for broader re-
search on language-based security in verified systems software.

Although the focus of this paper is on the general design of a separa-
tion logic for machine code, and is thus largely parametric in the underlying
machine model, one’s confidence in the real world validity of verifications
in the logic is undeniably limited by one’s confidence in the accuracy of
that model. Our x86 model was hand-constructed from reading the Intel
manuals and, although small programs extracted from Coq seem to run as
expected on real hardware, has not been subject to any systematic test-
ing or verification. Indeed, there is one aspect of the Intel specification
that we knowingly do not currently model, namely the presence of a code
cache: instructions written to memory are, on post-Pentium processors, not
guaranteed to be picked up by subsequent execution until a jump or other
synchronizing instruction has occurred. We plan to treat the code cache fol-
lowing the approach of Myreen [28], which we expect to be unproblematic.
More generally, however, we would like to work with a more trustworthy
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machine model; these have previously been obtained by extensive testing
[19, 26] and semi-automated extraction from the text of reference manuals
[11].

An important feature currently missing from our machine model is I/O.
By adding this we would incorporate observations beyond the simple notion
of ‘safe’ execution, but we believe that our framework is generic enough
that the safe specification can be generalized to safety properties involving
observable input and output transitions. We have not so far given any serious
thought to how one might also prove liveness properties in a comparably
extensional way, though that is clearly an interesting subject for future work.
It would also be useful to extend our logic to deal with binary relations,
rather than unary predicates, on machine states. Such an extension would
allow us to verify information flow and abstraction properties [7].

We have already begun to experiment with verified compilation, build-
ing a tiny imperative language, its compiler, program logic and proof of
correctness, all within Coq. It is straightforward to mix machine code with
higher-level languages, as our logic provides a common framework for speci-
fying their interaction at a suitably high level. We plan to develop a number
of domain-specific ‘little languages’ within the same framework.

Low-level code often makes sophisticated use of low-level data structures
whose ‘ownership’ properties cannot easily be captured by the default model
of separation described here. We might instead employ ‘fictional separation
logic’ [22]; it is interesting to note that even our use of partial states Σ to
describe the machine state S in a more fine-grained way is reminiscent of
fictional separation.

Acknowledgements. We would like to thank Lars Birkedal and Kasper
Svendsen for many discussions on higher-order frame rules and their appli-
cations.
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1 Introduction

Separation logic has been very successful at giving concise specifications and
short proofs to pointer-manipulating programs. Unfortunately, the term
separation logic covers a whole zoo of different theories. Almost every pub-
lication that applies separation logic starts by defining a new logic that is
general enough to attack the problem at hand but not so general that it
disturbs the presentation with orthogonal features.

This proliferation of theories has been identified as a problem several
times [BBTS05, Par10], but that has not stopped the flow of new logics
being created. Given that no logic proposed so far is a generalisation of all
others, we should welcome more exploration and diversity for the foreseeable
future.

For new researchers in the field, the best sources for building an intu-
itive as well as formal understanding of separation logic are still the original
articles from 2001-2002 [Rey02, IO01]. Unfortunately, this leads many re-
searchers to ignore some of the recent advances that lead to more general
theories with simpler and more concise presentation and metatheory.

This chapter attempts to summarise those advances in the hope that it
will allow new research on separation logic to start from the cutting edge as
of 2013 instead of 2002. The reader is assumed to have some familiarity with
separation logic. A good place to start would be the 2002 introduction by
Reynolds [Rey02] or the 2012 tutorial by O’Hearn [O’H12]. More in-depth
theoretical discussions are found in [IO01] and [Rey11], although these are
still introductory texts.

The level of formal detail in this chapter will be quite high since it aims
to be useful for readers trying to encode separation logic in a proof assistant
or building a stand-alone tool.

1.1 Overview

The general recipe for making a separation logic, and the structure of this
chapter, is as follows.

1. Choose a programming language. Small variations in the definition
and semantics of the language can have great consequences for the ease
of building a separation logic for it.

2. Design the assertion logic; i.e., the formulas that describe machine
state. It typically includes separating conjunction and points-to formu-
las. Assertion-logic formulas are typically modelled as sets of machine
state subject to some instrumentation and/or side conditions.

3. Design the specification logic; i.e., the formulas that describe com-
putations. It typically includes Hoare triples, which refer to assertions
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in their pre- and postconditions. In some higher-order settings, the
assertion logic may also refer to specifications, in which case the defi-
nitions of these two logics may have to be mutually recursive or may
coincide.

There is also an optional 0’th step: choose a metalogic; i.e., a math-
ematical framework in which to formulate the theory. The metalogic is
usually implicitly chosen as “standard math as taught in school”, but re-
cent examples have shown that some separation logics become both sim-
pler and more general when embedded in a metalogic that provides, for
example, bound names [Pit01], dependent types [KBJD13] or step-indexing
[SB13a, BMSS12].

1.2 What is a separation logic?

To limit the scope of this text, we impose some minimum requirements on
what is considered a separation logic. We will say it must contain:

1. An logic of assertions P,Q,R that is a complete BI algebra; i.e., it
satisfies the rules in Figure 2 (page 149) and Figure 4 (page 153).

2. A logic of specifications S that is a complete Heyting algebra; i.e.,
it satisfies the rules in Figure 2.

3. A Hoare-triple specification of the form {P} c {Q} or a generalisa-
tion thereof. The Hoare triple must satisfy

P ` P ′ S ` {P ′} c {Q′} Q′ ` Q
Consequence

S ` {P} c {Q}

S ` ∀x. {P (x)} c {Q}
Exists

S ` {∃x. P (x)} c {Q}
S ` {P} c {Q}

Frame
S ` {P ∗R} c {Q ∗R}

These requirements are somewhat imprecise, but they have to be, since
they apply to logics that have yet to be invented.

The inference rules required of the triple ensure that it admits the narra-
tion style of writing a Hoare-logic proof [Rey11, WDP13], where commands
are interleaved with assertions. Figure 1 shows an example proof narration
that uses all three rules.

1.3 Contributions

The main contribution of this chapter is to survey a portion of the first twelve
years of separation-logic literature in a common mathematical framework.
There is too much published literature to mention it all, so the focus is on
techniques that are needed everywhere rather than the very latest develop-
ments in specific areas such as concurrency.
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{head 6= nil ∧ list(head)} (Consequence)

{∃n. head 7→ n ∗ list(n)} (Exists)

{head 7→ n ∗ list(n)} (Frame)

{head 7→ n}
next := [head];

{head 7→ n ∧ next = n}
{(next = n ∧ head 7→ n) ∗ list(n)} (Consequence)

{head 7→ next ∗ list(next)} (Frame)

{head 7→ next}
free(head);

{emp}
{emp ∗ list(next)} (Consequence)

{list(next)}

Figure 1: Narration-style proof of a two-line example program.

The chapter follows the same structure as most other articles that define
a programming language and build a separation logic for it, but along the
way we discuss alternatives and variations at every point. A particularly
thorough treatment is given to separation algebras, since their theory is
highly scattered across the literature and often stated in a much less general
form than it could be.

Despite its length, this text is far from being self-contained. The reader
is encouraged to follow literature references for more details and discussions
and for fully worked-out examples.

The conclusion is that making a full-featured higher-order separation
logic is not difficult. With the well-known but underused techniques of
shallow embedding and separation algebras, satisfying the axioms of Figures 2
and 4 can be done by satisfying another set of axioms that is simpler and
relates more directly to the memory model of a programming language.

2 Semantics of the programming language

A separation logic is typically formulated in the context of one particular
programming language, and it is left as an exercise to the reader to port it to
other languages. This is rarely a hurdle, but it certainly makes comparisons
more difficult. In those articles that abstract away from the details of the
programming language [COY07, BJSB11, DYBG+13], the added generality
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is typically considered a central contribution.
The choice of programming language and semantics forms part of the

statement of the soundness theorem, so it should be as uncontroversial as
possible. It is often so uncontroversial that it is not even written out in
full. There are a few choices to make, though, beginning with the style of
semantics:

Operational. Some flavour of operational semantics is typically the pre-
ferred choice. A typical big-step semantics is an inductively-defined
predicate of the form σ, c σ′ that holds when command c from state
σ may terminate successfully in state σ′. A typical small-step seman-
tics is an inductively-defined predicate of the form σ, c  σ′, c′ that
holds when command c may take a single step from state σ, leaving
a residual command c′ and a modified state σ′. Both types of opera-
tional semantics often have an additional form σ, c  fail that holds
when c from state σ may fail, either eventually (for big-step semantics)
or in one step (for small-step semantics).

The word “may” above refers to non-determinism of the semantics,
which typically arises from memory allocation and concurrency.

Denotational. It is possible to build a separation logic over a denotational
semantics, but this is quite rarely seen. Examples include the work of
Varming and Birkedal [VB08], Brookes’s soundness proof of concurrent
separation logic [Bro07] and Hoare Type Theory [PBNM08].

Axiomatic. An axiomatic semantics can be thought of as a program logic
without a soundness proof, which sounds like a bad thing. But if this
underlying program logic has already been proved sound elsewhere,
then an axiomatic semantics can be an effective shortcut to a simpler
metatheory. It also demonstrates that the underlying program logic is
sufficiently expressive when a high-level program logic can be layered
on top of it.

Examples of axiomatic semantics for separation logics are rare, but we
found it very useful in [JB12], where the soundness of fictional sepa-
ration logic is proved relative to the soundness of standard separation
logic. Another example is [DYGW10], where a high-level program and
its specification are translated to a low-level program and a low-level
specification.

The rest of this section will discuss operational semantics only.
Authors of separation logics are often guilty of defining the programming-

language semantics in ways that are perhaps unnatural for the language but
make it easier to prove the separation-logic metatheory. It is then under-
stood, either formally or informally, that this instrumented semantics is
adequate with respect to a semantics that would be more natural for the
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language; i.e., any specification proved to hold in the instrumented semantics
also holds in the original semantics.

For instance, it is typical to instrument the semantics so it is well-defined
how commands behave in partial states – i.e., states where any location
might be missing. This might be done even when modelling a machine
where all memory is present all the time [JBK13, Myr10], or where the
type system of the language would ordinarily guarantee that there are no
dangling pointers [Par05, BJSB11]. Commands executed from a too small
partial state should then fail. When this is defined just right, we can prove:

Safety monotonicity. If command c cannot fail in state σ, then it cannot
fail in any extension of σ either.

Frame property. In a big-step semantics, the frame property holds if when-
ever a configuration (σ0, c) cannot fail and (σ0 · σ1), c σ′ then there
exists σ′0 such that σ0, c σ′0 and σ′ = σ′0 · σ1. Here, · is composition
of disjoint states – see Section 3.3.

When these two properties hold, the frame rule follows easily [YO02].
The properties above surprisingly sensitive to language features. Safety

monotonicity will fail if there is a command to query whether some memory
location is mapped [YO02]. The frame property will even fail if the memory
allocator is deterministic [YO02]. It is possible, though, to have the frame
rule without having the frame property – see Section 4.1.1.

2.1 Modelling failure

Failure – i.e., the program crashing – is traditionally a crucial part of sepa-
ration logic. Hoare triples {P} c {Q} are always interpreted to imply that
(σ, c) cannot fail when σ satisfies P ; thus, there must be a possibility of
failure in the semantics, or this property of triples would hold vacuously.
As mentioned above, failure can be modelled with a transition σ, c fail in
the operational semantics, and it typically happens when dereferencing an
invalid pointer.

One must consider whether the semantics permits the distinction be-
tween three important program behaviours: successful termination, fail-
ure and non-termination. One or both of the latter two behaviours might
correspond to the semantics getting stuck; i.e., not allowing further reduc-
tions. We say that a configuration (σ, c) is stuck1 when there is no x, not
even fail, such that σ, c x.

In a big-step semantics, stuckness should correspond to (guaranteed)
non-termination, and therefore we need the fail value to model actual failure
if we want to distinguish the two. But this means that a rule must be added
to trigger and propagate failure in every place it might occur. In the version

1 In a small-step semantics, we might further require c 6= skip.
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of the Charge! platform described in [BJSB11], there are about as many rules
for failure as there are rules for success, and forgetting to add a failure rule
renders the model of the programming language unsound. This is because it
makes failure look like non-termination, and a partial-correctness program
logic cannot distinguish non-termination from success.

A possible fix for this problem is to not have failure rules but instead a
set of coinductive rules for when a configuration (σ, c) may diverge [LG09].
Then failure is defined as a configuration that is stuck but cannot diverge,
and omission of rules leads to incompleteness instead of unsoundness.

In a small-step semantics, we can often design a system where stuckness
corresponds to failure, avoiding the need for a special fail configuration.
This increases confidence in the semantics and cuts the number of rules
approximately in half for the reasons mentioned above. It works because
stuckness of a subcommand tends to propagate to compound commands:
the sequence command crash; c will be stuck after one step because the crash
command is stuck. Unfortunately, this is sensitive to language features;
in particular, it will not work in a language with a parallel operator: the
command crash || loop forever is never stuck. In such a language, it is
therefore necessary to add an explicit fail configuration [Vaf11], leading to
the same problems as in a big-step semantics.

It is worth mentioning that the Views framework [DYBG+13] quite ele-
gantly avoids explicit propagation of failure through control-flow commands.
It is a small-step semantics, but instead of a failure configuration (replacing
(σ, c)), there is a failure state (replacing σ). See [SB13b] for a generalisation
of the approach that also works for procedure calls and fork-parallelism.

2.2 Modelling concurrency

Separation logic for concurrent languages is an important and active area
of research, and there is certainly room for further exploration. Important
choices to be made in the semantics include the following.

• The basic concurrency primitive can be either a parallel operator
(c1 || c2) or a fork command (fork c or fork f for a function name
f). The fork command is more similar to real-world programming
languages, but the parallel operator is sometimes easier to model. This
is because it is often less expressive – in particular, it is often impossible
to write a program that executes n commands concurrently, where
n is only determined at run time. This becomes possible to do in
continuation-passing style if the language has recursive procedures.

In a language without procedures and where concurrency comes from
the parallel operator, it is possible to syntactically see which threads
are active at which point in the program. This can be used to simplify
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proofs [GBC11], but that technique does not scale directly to realistic
languages.

• Communication between threads must also be built into the language
at some level. Common solutions include static locks, dynamically-
allocated locks, a compare-and-swap command, and an atomic
command modifier. Some of these primitives can be derived from
each other in a more or less practical way.

• Local (stack) variables can be shared between threads or not. Even
though real-world programming languages rarely share mutable local
variables between threads, this is often allowed in the semantics of toy
languages, and then races must be ruled out at the logic level [O’H07].

Sharing of mutable local variables becomes more complicated if con-
currency comes from a fork command or if they might also be captured
in lambda-expressions [SBP10].

• Most separation logics published so far have been for toy languages
with sequentially-consistent memory, meaning that all threads agree
on the value of shared memory at all times. Actual programming
languages and multi-core hardware have weaker memory models, and
weak-memory separation logics have only recently started to emerge
[FFS10, WB11, VN13].

3 Assertion logic

Assertions are the formulas P,Q occurring in the pre- and postconditions of
Hoare triples {P} c {Q}. They are essentially predicates on machine state,
and the distinguishing feature of separation logic is that they can contain
separating conjunction and related operators. In this section, we will develop
the theory necessary to make all this formal.

3.1 Heyting algebras

The assertion logic must first of all be a logic. I choose to define a logic as
a complete Heyting algebra:

Definition 3.1. A complete Heyting algebra is a type equipped with
operators (>,⊥,∧,∨,∀,∃,⇒) and a binary entailment relation `, satis-
fying the axioms of Figure 2. Read the horizontal lines in the figure as
implication in the metalogic. �
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`-Refl
P ` P

P ` Q Q ` R `-Trans
P ` R

P ` Q Q ` P `-AnSy
P = Q

>-R
P ` > ⊥-L⊥ ` P

P ` Q1 P ` Q2 ∧-R
P ` Q1 ∧Q2

P1 ` Q ∧-L1
P1 ∧ P2 ` Q

P2 ` Q ∧-L2
P1 ∧ P2 ` Q

P1 ` Q P2 ` Q ∨-L
P1 ∨ P2 ` Q

P ` Q1 ∨-R1
P ` Q1 ∨Q2

P ` Q2 ∨-R2
P ` Q1 ∨Q2

P ` Q⇒ R ∧-Adjoint
P ∧Q ` R

P ∧Q ` R ⇒-Adjoint
P ` Q⇒ R

∀x : T. (P ` Q(x))
∀-R

P ` ∀x : T. Q(x)

P (t) ` Q
∀-L∀x : T. P (x) ` Q

∀x : T. (P (x) ` Q)
∃-L∃x : T. P (x) ` Q

P ` Q(t)
∃-R

P ` ∃x : T. Q(x)

Figure 2: Axioms of a complete Heyting algebra.

For convenience, we define the following abbreviations.

` P , > ` P pronounced “P is valid”

P ≡ Q , P = Q but with low precedence, like `
¬P , P ⇒ ⊥

The axioms in Figure 2 are one of many equivalent presentations. Like
a sequent calculus, most rules are presented as left-rules and right-rules for
each operator. However, it is not a standard sequent calculus. Notice the
following details.

• There is a single hypothesis on the left of the turnstile rather than a
comma-separated list of hypotheses. This is the norm in separation
logic because it is otherwise not clear whether the comma would denote
ordinary conjunction or separating conjunction. For an alternative
that is more suitable for proof theory, see [OP99].

• The rules for implication (∧-Adjoint and⇒-Adjoint) do not follow
the pattern of left-rules and right-rules. They are instead presented
as an adjunction, or Galois connection: for any P , the functor
− ∧ P is the left adjoint of P ⇒ −. This presentation simplifies the
proof system when there is only one hypothesis on the left of the
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turnstile. It also highlights the fact, coming from the general theory
of adjunctions, that the implication operator is uniquely determined
by the conjunction operator and vice versa.

• The rules in Figure 2 are written out quite verbosely such that they
look like a logic and can be practically applied as such. A more com-
mon definition of complete Heyting algebra would characterise entail-
ment ` as a partial order with least upper bounds (⊥,∨, ∃), greatest
lower bounds (>,∧,∀) and an exponential (⇒).

Most logics in the separation-logic literature are less general than a com-
plete Heyting algebra, either because they are missing some operators or
because the domain of quantification is restricted. However, there is rarely
a reason for this lack of generality, other than a perceived gain in simplicity.
We will see in Section 3.3 how to define an assertion logic such that it is a
complete Heyting algebra by construction.

3.1.1 Shallow embedding

Definition 3.1 does not go through the traditional indirection of defining a
syntax for formulas and a denotation function from syntactic formulas to
semantic assertions. We have only the semantic assertions, and operators
such as ∧ are merely infix functions on those.

This approach is sometimes known in the literature as a shallow em-
bedding [WN04], “working directly in the semantics” or “the extensional
approach” [Nip02]. It is used by the majority of separation-logic formalisa-
tions inside proof assistants [AB07, TKN07, CSV07, VB08, McC09, Myr10,
BJSB11, JBK13, AM13] since it eliminates a lot of tedious work – the kind
of work that tends to be dismissed as “routine” in informal mathematics
but cannot be ignored when every detail has to be machine-checked. In
particular, a shallow embedding eliminates the need for contexts of logical
variables and their types, accounts of free logical variables, or capture-
avoiding substitutions and notions of fresh names. It does not save us from
proving tedious results about program variables, though; see Section 3.4.

The quantifiers in Figure 2 are annotated with a domain T , which we
sometimes omit when it is clear from the context. Because we have a shallow
embedding, T ranges over the types of the metalogic, and the formula under
the quantifier is a metalogic function from T to assertions. Notice that
the universal quantifiers in the premise of rules ∀-R and ∃-L belong to the
metalogic rather than the complete Heyting algebra. Notice also that it is
possible for T itself to be the type of assertions, which means that we have
defined a higher-order logic.

The opposite of shallow embedding is a deep embedding, where for-
mulas and inference rules are syntactic objects that can be manipulated
independently of their semantic models, of which there can be many. A
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common motivation for deep embeddings is to study the rules of the logic
independently from its models. But notice that we can still do this since
Definition 3.1 characterises complete Heyting algebras in the abstract, sep-
arately from describing any particular such algebra. Shallow embedding is
not a new way to study logic, but it is rarely used with separation logic out-
side proof assistants. Compare this with other mathematical fields, where it
is standard, for example, to study group theory independently of particular
groups, and nobody would propose to use syntactic formulas for this.

With all this said, it is justifiable to use a deep embedding when the
desire is to limit expressiveness of the logic deliberately [Nip02]. This can
be used for stating decidability or completeness results or when documenting
a software tool that manipulates this logic and thus needs to represent it
symbolically.

3.1.2 Injecting metalogic propositions

The quantifiers in a shallow embedding allow us to mention data of arbitrary
type in formulas. For this to be useful, we also need to inject propositions
from the metalogic that describe this data. In particular, we will need an
injection 〈p〉 of metalogic propositions p into assertions.

The alternative to such an injection would be to recreate the necessary
mathematical theories inside the assertion logic; i.e., equality, induction,
recursion, etc. While this is certainly possible, it could end up being more
work than the separation logic itself.

Fortunately, we can define a 〈p〉 for any Heyting algebra by exploiting
the existential quantifier and metalogic subtyping2:

〈p〉 , ∃x : {x : unit | p}. >

The injection is covariant with respect to entailment, and it satisfies
practical left- and right-rules:

p⇒ q 〈〉-`〈p〉 ` 〈q〉
p⇒ (` Q) 〈〉-L〈p〉 ` Q

q 〈〉-R
P ` 〈q〉

We now have the theory of equality in our complete Heyting algebra for
free, simply by lifting it from the metalogic. For instance, we can prove

P (x) ∧ 〈x = y〉 ` P (y)

The corresponding entailment in a deep embedding would be written as
P ∧ x = y ` P [y/x]. The deep-embedding concepts of free variables and
substitutions are modelled here with function application.

2 The exact definition will vary depending on the metalogic. The unit type can be
replaced with any other non-empty type. In Coq, we can simply write 〈p〉 , ∃x : p. >.
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> , T P ∧Q , P ∩Q ∀x : T. P (x) ,
⋂

x:T

P (x)

⊥ , ∅ P ∨Q , P ∪Q ∃x : T. P (x) ,
⋃

x:T

P (x)

P ` Q , P ⊆ Q P ⇒ Q , {t | ∀t′ ≥ t. t′ ∈ P ⇒ t′ ∈ Q}

Figure 3: Kripke definition of a complete Heyting algebra when assertions
are subsets of T , upwards closed under a preorder ≤.

3.1.3 Kripke models

Complete Heyting algebras are convenient because they correspond to a
familiar notion of logic. They are also convenient because they are easy to
construct from a type T and a preorder on T ; i.e., a binary relation that
is reflexive and transitive:

Proposition 3.1. Given a preordered type (T,≤), the powerset P≤(T ) is a
complete Heyting algebra, where

P≤(T ) , {P : P(T ) | ∀t ∈ P. ∀t′ ≥ t. t′ ∈ P}

and the operators of P≤(T ) are defined as in Figure 3.

The definitions in Figure 3 are known as a Kripke model; the inter-
esting part of it is the definition of implication, which explicitly ensures
closure under ≤, whereas that closure holds directly for all other operators.
The injection from the metalogic to the assertion logic that was discussed
in Section 3.1.2 can be defined as 〈p〉 = {t | p}.

More generally, we can construct a Heyting algebra from an existing one
as follows.

Proposition 3.2. Given a complete Heyting algebra A and a preordered
type (T,≤), the space of monotonic functions T →≤ A is also a complete
Heyting algebra, where

T →≤ A , {f : T → A | ∀t, t′. t ≤ t′ ⇒ (f(t) ` f(t′))}

and the operators of T →≤ A are defined in terms of the operators on A:

P ⊕Q , λt. P (t)⊕Q(t) for ⊕ ∈ {∧,∨}
P , λt. P for P ∈ {>,⊥}

κx.P (x) , λt. κx.P (x)(t) for κ ∈ {∀, ∃}
P ⇒ Q , λt. ∀t′ ≥ t. P (t′)⇒ Q(t′)

P ` Q , ∀t. (P (t) ` Q(t))
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∗-Assoc
(P ∗Q) ∗R ` P ∗ (Q ∗R)

∗-Comm
P ∗Q ` Q ∗ P

∗-emp
P ∗ emp ≡ P

P ` Q ∗-`
P ∗R ` Q ∗R

P ` Q −∗ R ∗-Adjoint
P ∗Q ` R

P ∗Q ` R −∗-Adjoint
P ` Q −∗ R

Figure 4: Additional axioms of a BI algebra

Proof. See [BJ], Lemma ILPre ILogic. �

We will use these constructions to define specification logics, and we will
use generalised forms of them to define assertion logics.

Note that the law of the excluded middle, i.e. ` P∨¬P for all P , does
not follow from the axioms of a complete Heyting algebra, and it is invalid
in the models constructed here unless the preorder is also symmetric; i.e.,
an equivalence relation.

3.2 BI algebras

Defining complete Heyting algebras only got us half way to separation-logic
assertions. We still need an account of the operators that make separation
logic special: separating conjunction (∗), separating implication (−∗), and
emp. Note that emp is sometimes written I in the literature.

Definition 3.2. A complete BI algebra [Pym02] is a complete Heyting
algebra with additional operators (∗,−∗, emp) satisfying the axioms in Fig-
ure 4. The precedence of operators used in this text will be, in decreasing
order:

= ∗ ∧ ∨ −∗ ⇒ ∀ ∃ ` ≡ �

The axioms in Figure 4 are intentionally minimal. Rules for associativity
and commutativity with ≡ instead of ` are derivable. It can also be derived
that ∗ is covariant in both arguments; i.e.,

P ` P ′ Q ` Q′
P ∗Q ` P ′ ∗Q′

When I required in Section 1.2 that the assertion logic must be a com-
plete BI algebra, it was not only because this gives us the rules that make
separation logic intuitive to work with. It is also because it is easy to satisfy
these rules. We will see in Section 3.3 how a complete BI algebra arises
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naturally from the memory model of a typical programming language or
machine.

The operators −∗ and ⇒ are often omitted from presentations when
they are not needed for the examples at hand. But even then, they play
an important role in metatheory: they witness that ∗ and ∧ commute with
existential quantification as explained in the following proposition.

Proposition 3.3. In a complete Heyting algebra with an operator ∗ satis-
fying rule ∗-`, it holds that (∃x: T. P (x)) ∗Q ` ∃x: T. P (x) ∗Q if and only
if there is an operator −∗ satisfying the rules ∗-Adjoint and −∗-Adjoint.

This proposition is a direct consequence of the adjoint functor theorem in
category theory, but it is worth seeing the proof written out for the specific
case of separation logic. Notice that the left-to-right direction, which is
probably the surprising one, is only provable because the assertion logic is
higher order, and we can quantify over a type T that represents a set of
assertions.

Proof. (⇐) By the following proof tree.

`-Refl∀x. (Q(x) ∗ P ` Q(x) ∗ P )
∃-R∀x. (Q(x) ∗ P ` ∃x. Q(x) ∗ P ) −∗-Adjoint∀x. (Q(x) ` P −∗ ∃x. Q(x) ∗ P )
∃-L∃x. Q(x) ` P −∗ ∃x. Q(x) ∗ P
∗-Adjoint

(∃x. Q(x)) ∗ P ` ∃x. Q(x) ∗ P
(⇒) Define Q −∗ R as ∃P ′ : {P ′ | P ′ ∗ Q ` R}. P ′. We first prove

−∗-Adjoint, which holds without appealing to the assumption we made:

`-Refl
P ` P

P ∗Q ` R
(metalogic)

P : {P ′ | P ′ ∗Q ` R}
∃-R with P

P ` ∃P ′ : {P ′ | P ′ ∗Q ` R}. P ′
Def.

P ` Q −∗ R
To prove ∗-Adjoint, we appeal to our assumption under the name ∗-∃.

P ` Q −∗ R ∗-`
P ∗Q ` (Q −∗ R) ∗Q

∀P ′. (P ′ ∗Q ` R)⇒ (P ′ ∗Q ` R)
(metalogic)∀P ′ : {P ′ | P ′ ∗Q ` R}. (P ′ ∗Q ` R)
∃-L∃P ′ : {P ′ | P ′ ∗Q ` R}. P ′ ∗Q ` R
∗-∃

(∃P ′ : {P ′ | P ′ ∗Q ` R}. P ′) ∗Q ` R
Def.

(Q −∗ R) ∗Q ` R
`-Trans

P ∗Q ` R
�

By analogy with Proposition 3.3, we can also show that the ⇒-operator
exists if and only if the ∧-operator commutes with existentials.
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3.2.1 Classical and intuitionistic logics

There is an important special case of BI that is relevant for separation
logic: Boolean BI (BBI). BBI is obtained by adding the law of the
excluded middle (` P ∨ ¬P for all P ) to the axioms of Figure 2, which
makes Figure 2 describe a complete Boolean algebra – a special case of
a complete Heyting algebra. Adding the axioms of Figure 4 as well, one
obtains a complete BBI algebra.

Another important dialect is affine BI [GMP05]. This is obtained by
adding weakening of ∗ to BI, meaning that P ∗ Q ` P , or equivalently,
emp ≡ >. It is the preferred way to define a separation logic for a garbage-
collected language, where it lets us “logically forget” the resource Q with
the expectation that it will be garbage-collected some time after (or even
before! [Rey00, HDV11]) logically forgetting it.

In the separation-logic literature [IO01], BBI is typically known as clas-
sical separation logic, and affine BI is known as intuitionistic separa-
tion logic. This is unlike the more established terminology from philosoph-
ical logic, where propositions that are provable in intuitionistic logic are also
expected to be provable in classical logic. To add to the confusion, there
also exists classical BI [BC10], which is something else entirely. To avoid
these clashes of terminology, I will prefer the terms Boolean and affine over
classical and intuitionistic in the remainder of this chapter.

A BI algebra that is both Boolean and affine collapses in the sense that
P ∗Q ≡ P ∧Q [BK10]. On the other hand, as we will see in Section 3.3.4,
there exist useful separation logics that are neither Boolean nor affine.

3.2.2 Design freedom

It might seem like there is a great deal of freedom when designing a logic
that satisfies the axioms in Figures 2 and 4, but many operators are uniquely
determined by others. In fact, all operators of a complete BI algebra are
uniquely determined when ` and ∗ are chosen.

The left- and right-rules of Figure 2 uniquely identify the operators
(∀, ∃,∧,∨,>,⊥). For example, if another operator ∧∧ satisfies the axioms
for ∧ in Figure 2, it follows that P ∧∧Q ≡ P ∧Q for all P and Q.

It follows from Figure 4 that (∗, emp) is a monoid, so its unit emp is
unique. This means that once the operator ∗ is defined, there is no freedom
left to choose the operator emp.

Similarly, the proof rules for −∗ and ⇒ essentially say that (P −∗ −) is
the right adjoint of (−∗P ) and that (P ⇒ −) is the right adjoint of (−∧P ).
Since adjoints are unique, there is no freedom in choosing the operators
(−∗,⇒) once (∗,∧) have been defined. In fact, we can define −∗ and ⇒ in
terms of other operators:

Proposition 3.4. In a complete BI algebra asn, for all Q,R : asn,
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1. Q −∗ R ≡ ∃P : {P | P ∗Q ` R}. P

2. Q⇒ R ≡ ∃P : {P | P ∧Q ` R}. P

Proof (of 1.). Define Q −∗∃ R , ∃P : {P | P ∗ Q ` R}. P . The proof of
Proposition 3.3 shows that −∗∃ follows the same two axioms as −∗. It follows
that (P −∗∃ Q ` P −∗ Q) if ((P −∗∃ Q) ∗ P ` Q) if (P −∗∃ Q ` P −∗∃ Q) if
true. The converse is similar, which gives the necessary bientailment. �

We can also define (∧,>) and (∨,⊥) in terms of ∀ and ∃ respectively:

Proposition 3.5.

1. Assume P,Q : asn, where asn is a complete Heyting algebra. Let
f2 : {true, false} → asn be the function that maps true to P and false
to Q. Then

P ∨Q ≡ ∃b. f2(b)
P ∧Q ≡ ∀b. f2(b)

2. Let f0 : ∅ → asn be the unique function with that type. Then, in a
complete Heyting algebra,

⊥ ≡ ∃x. f0(x)

> ≡ ∀x. f0(x)

Proof. See the Coq code accompanying [JBK13], Section ILogicEquiv. �

3.3 Separation algebras

3.3.1 Heaps

For a typical toy programming language, the type of heaps is defined as
heap = loc fin⇀ val , where loc is the type of heap locations (e.g., the natural
numbers), val is the type of values that can be stored in the heap (e.g.,
integers and locations), and fin⇀ is the space of partial functions with finite
domain. It is convenient to let loc be an infinite set and let all heaps have
finite domain because this guarantees that allocations can always succeed –
there are always infinitely many free locations in the heap.

The standard way to build a complete BI algebra from this type is to
define a composition operation: (·) : heap×heap ⇀ heap. The composition
h1 · h2 is defined when the domains of h1 and h2 are disjoint, in which case
it takes the union of the two partial functions; i.e.,

(h1 · h2)(l) =





h1(l) if l ∈ dom(h1) \ dom(h2)

h2(l) if l ∈ dom(h2) \ dom(h1)

undefined otherwise
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The assertion logic can then be defined as asn = P(heap), which is a
complete BBI algebra with the following operators.

∃x : T. P (x) =
⋃

x:T

P (x) (1)

∀x : T. P (x) =
⋂

x:T

P (x) (2)

P ∗Q = {h1 · h2 | h1 ∈ P ∧ h2 ∈ Q} (3)

To make this useful, we define a points-to operator as l 7→ v = {[l 7→ v]},
where [l 7→ v] is the singleton map that only maps l to v.

Although we could in principle reason directly about heaps and their
composition [NVB10], it is typically considered easier to work in terms of the
total operator ∗ than the partial operator ·. The ∗ operator also generalises
better than ·, as we will see in Section 3.3.4.

Affine assertion logic. The assertion logic defined in Equations (1–3) is
Boolean in the sense described in Section 3.2.1. More generally, for any set
X, its powerset P(X) is a complete Boolean algebra with the quantifiers
defined as in (1) and (2). To build an affine logic instead of a Boolean one,
we define assertions to be closed under the extension ordering of heaps,
defined as h v h′ when h′ has all the same mappings as h (and possibly
more).

h v h′ , ∃h0. h′ = h · h0
asn = Pv(heap)

With the same definitions of (∃, ∀, ∗) as in Equations (1–3), this forms a
complete affine BI algebra [IO01].

3.3.2 Motivations for generalisation

Other programming languages might define heap differently. For example,
an object-oriented language [BJSB11] might have heap = loc × field fin⇀ val ,
where field is the set of field names; i.e., strings. A machine language for a
32-bit machine [JBK13] might have heap = [0..232) fin⇀ [0..28).

Furthermore, memory models are often instrumented, either at the
level of operational semantics or at the logical level. An important exam-
ple of such instrumentation is fractional permissions [BCOP05, Boy03],
where a heap cell contains not only a value but also a rational number in
perm = {q : Q | 0 < q ≤ 1}, where permission 1 is a read-write permis-
sion, and any smaller number is a read-only permission. Then we write
heap = loc fin⇀ val ×perm and let heap composition (·) be defined even when
there is overlap in the heap domains as long as the overlapping locations
agree on values, and their permissions sum up to at most 1.
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Very elaborately-instrumented heaps can be found in the work on con-
current abstract predicates [DYDG+10, SBP13, SB13a]. These “heaps”
can contain fractions, named regions, relations on (simpler) heaps, state
machines, step-indexes [AM01] and ghost state.

There is thus clearly a need to construct complete BI algebras from the
powersets of very elaborate structures. The good news is that there is a
theory for doing exactly that in two steps: first, prove that the structure in
question is a separation algebra. Then invoke a theorem that says that
the powerset of any separation algebra, possibly closed under a suitable
preorder, is a complete BI algebra. Proving that something is a separation
algebra is often a very syntax-directed activity, so this approach greatly
reduces the amount of work to be carried out when building an assertion
logic.

We will first look at how to build a complete BI algebra from a separation
algebra, and then we will look at how to build a separation algebra.

3.3.3 Definitions of separation algebra

The claim from Section 3.3.1 that the powerset of loc fin⇀ val is a complete
BI algebra can be proved entirely based on the abstract properties of the
composition operator (·): it forms a partial commutative monoid. Being
a monoid means that composition is associative, which lifts to powersets and
lets us prove associativity of the ∗ operator as we defined it in Equation (3).
It also means that there is a unit element 0, and we can define emp = {0}
and prove that it is the unit of ∗. Commutativity lifts to powersets as well.
The remaining rules in Figure 4 follow from (3) without appealing to the
monoid properties.

The term separation algebra is used in the literature to describe struc-
tures of this kind. Unfortunately, there is little agreement on what a separa-
tion algebra is precisely. Some authors [JB12, GBC11] define it as a partial
commutative monoid (Σ, ·, 0) with a carrier set Σ, a partial binary operation
(·) and a unit 0 for that operation, but the following variations, and more,
exist.

• The original definition [COY07] required cancellativity, meaning
that if a1 · a and a2 · a are defined and equal, then a1 = a2. This prop-
erty is not important for constructing a complete BI algebra, but it can
be important for validating the conjunction rule, which says that
{P} c {Q1} and {P} c {Q2} implies {P} c {Q1 ∧Q2} [JB11, GBC11].
It is still common for definitions of separation algebras to include can-
cellativity [Tue09, DHA09, BJSB11, BK10], but it is less common that
they make active use of that axiom.

• Newer definitions [DHA09, BK10, DYBG+13] allow multiple units,
where the intuition is that every element is associated with exactly one
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unit, but there does not have to be one unit that is compatible with
every element. This effectively partitions the separation algebra into
equivalence classes; one for each unit. This situation arises naturally
when taking the disjoint union of two single-unit separation algebras
– then there will be two units [DHA09].

• Pottier [Pot13] does not require there to be units but instead requires
that there is a core for every element. Ordering elements by the
extension order, the core of a is meant to be the largest duplicable
element less than a, where an element is duplicable if it composes
with itself to yield itself. This definition does not generalise partial
commutative monoids; it is something different.

• Working with a partial monoid can be awkward. Asserting definedness
of composition can be overly verbose when done explicitly [NVB10]
and potentially ambiguous when done implicitly [JB12]. Some authors
have addressed this by requiring a total (i.e., ordinary) commutative
monoid and adding an absorbing element to represent undefinedness,
either always [GMP05] or when necessary [KTDG12].

• Other authors have gone in the opposite direction [GMP05, GLW06,
Pot13] and generalised the composition to have type Σ ×Σ → P(Σ).
This is called a non-deterministic monoid or, in the equivalent
presentation of a composition with type P(Σ ×Σ ×Σ), a relational
monoid.

• Dockins et al. [DHA09] proposed several more axioms that limit the
class of separation algebras to those that resemble heaps in various
senses.

In very recent work, Brotherston and Villard [BV13] propose a definition
that generalises all of the above, except possibly Pottier’s “core” concept:

Definition 3.3. A separation algebra is a triple (Σ, ·, U) where (·) : Σ×
Σ → P(Σ) and U ⊆ Σ, and the following holds

1. Commutativity: a ∈ a1 · a2 ⇒ a ∈ a2 · a1
2. Assoc.: a12 ∈ a1 · a2 ∧ a123 ∈ a12 · a3 ⇒ ∃a23 ∈ a2 · a3. a123 ∈ a1 · a23
3. Existence of unit: ∀a. ∃u ∈ U. a ∈ u · a

4. Minimality of unit: u ∈ U ∧ a′ ∈ u · a⇒ a = a′ �

This definition is identical to the one in the Views framework [DYBG+13]
except that composition here is non-deterministic rather than partial. We
will use this definition in the rest of this section and show several ways to
construct a complete BI algebra from it.

159

159



The four axioms of Definition 3.3 may not look like a natural or obvious
definition, but consider a lifting of · to sets A ⊆ Σ:

A1 ·A2 , {a | ∃a1 ∈ A1. ∃a2 ∈ A2. a ∈ a1 · a2}

The axioms of Definition 3.3 are then equivalent to this lifted · being com-
mutative and associative with unit U .

3.3.4 Upwards-closed assertions

All assertion logics I have encountered in the literature are essentially mod-
elled as the powerset of some separation algebra Σ, upwards closed under
some preorder ≤. That is, assertions are of type

P≤(Σ) , {P : P(Σ) | ∀a ∈ P. ∀a′ ≥ a. a′ ∈ P}

The Heyting part of the logic is then a standard Kripke semantics as defined
in Figure 3 (page 152).

Typical choices of the preorder are

• Equality (=), in which case P≤ = P(Σ), and the law of the excluded
middle holds in the logic.

• Some other equivalence relation (≡), in which case the law of the
excluded middle also holds.

• The extension ordering on the separation algebra (v). We encoun-
tered the extension ordering for heaps in Section 3.3.1, and it can be
generalised to arbitrary separation algebras as

a v a′ , ∃a0. a′ ∈ a · a0
As we will see below, this leads to an affine assertion logic.

• An interference relation [DYDG+10, DYBG+13] that describes how
other threads may modify the state described by assertions. This
enables local reasoning in a concurrent setting, at the cost of precision
of the assertions.

As a simple example [SBP13], a memory location could be tagged as
containing a monotonic counter, which can be increased or read
by any thread at any time. The interference relation is then chosen
to allow for such counters to go up but not down, which means that
assertions can only express that the counter has at least value n but
not exactly value n.

Another example is to let ≤ model the actions of a garbage collector,
such as deallocating and moving objects in memory [HDV11]. Asser-
tions closed under such a relation would be guaranteed immune to
garbage collection.
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While the Heyting part of P≤(Σ) is always as in Figure 3, there are
at least two different ways to obtain the BI part, depending on how the
separation algebra interacts with the preorder. The first is adapted from
[DYBG+13]:

Proposition 3.6. If (Σ, ·, U) is a separation algebra and ≤ is a preorder
on Σ satisfying the following two conditions

1. The unit set is closed under the preorder; i.e., ∀u ∈ U. ∀a ≥ u. a ∈ U .

2. ∀a1, a2. ∀a ∈ a1 · a2. ∀a′ ≥ a. ∃a′1 ≥ a1. ∃a′2 ≥ a2. a
′ ∈ a′1 · a′2;

intuitively, the operands of · can be transported upwards along ≤ to
follow the result.

then a complete BI algebra is formed by P≤(Σ) with the operators defined
as in Figure 3 and

emp = U

P ∗Q = {a | ∃a1 ∈ P. ∃a2 ∈ Q. a ∈ a1 · a2}
P −∗ Q = {a2 | ∀a′2 ≥ a2. ∀a1 ∈ P. a1 · a′2 ⊆ Q}

Proof. See [BJ], Section BIViews. That proof is actually of a slightly more
general fact, analogous to how Proposition 3.2 generalises Proposition 3.1.�

If the conditions for Proposition 3.6 are not satisfied3, then the following
proposition might apply instead. It is adapted from [GMP02, POY04] and
generalised from its original setting of partial commutative monoids to our
setting of more general separation algebras.

Proposition 3.7. If (Σ, ·, U) is a separation algebra and ≤ is a preorder
on Σ satisfying the following condition

1. ∀a′1, a′2. ∀a′ ∈ a′1 · a′2. ∀a1 ≤ a′1. ∀a2 ≤ a′2. ∃a ≤ a′. a ∈ a1 · a2;
intuitively, the result of · can be transported downwards along ≤ to
follow the operands.

then a complete BI algebra is formed by P≤(Σ) with the operators defined
as in Figure 3 and

emp = {a′ | ∃u ∈ U. u ≤ a′}
P ∗Q = {a′ | ∃a1 ∈ P. ∃a2 ∈ Q. ∃a ∈ a1 · a2. a ≤ a′}
P −∗ Q = {a2 | ∀a1 ∈ P. a1 · a2 ⊆ Q}

Proof. See [BJ], Section BISepRel. �
3 for instance, the extension ordering does not satisfy the first condition
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The conditions of neither Proposition 3.6 nor Proposition 3.7 generalise
the conditions of the other, so perhaps a unifying theorem is still waiting
to be discovered. Notice that Proposition 3.6 gives a simple and standard
definition of ∗ but a more involved definition of −∗, while in Proposition 3.7
it is the other way around.

Proposition 3.7 has the following corollaries for special cases of ≤.

Corollary 3.1. If (Σ, ·, U) is a separation algebra, then a complete Boolean
BI algebra is formed by P(Σ) with the operators defined as in Figure 3 and

emp ≡ U
P ∗Q ≡ {a | ∃a1 ∈ P. ∃a2 ∈ Q. a ∈ a1 · a2}
P −∗ Q ≡ {a2 | ∀a1 ∈ P. ∀a ∈ a1 · a2. a ∈ Q}
P ⇒ Q ≡ {a | a ∈ P ⇒ a ∈ Q}

Corollary 3.2. If (Σ, ·, U) is a separation algebra with extension ordering
v, then a complete affine BI algebra is formed by Pv(Σ) with the operators
defined as in Figure 3 and

emp ≡ >
P ∗Q ≡ {a | ∃a1 ∈ P. ∃a2 ∈ Q. a ∈ a1 · a2}
P −∗ Q ≡ {a2 | ∀a1 ∈ P. ∀a ∈ a1 · a2. a ∈ Q}

In logics modelled over P≤(Σ), primitive assertions such as points-to can
typically be defined in terms of the injection ·� : Σ → P≤(Σ), defined as
a� , {a′ | a′ ≥ a}. In words, a� is the smallest set in P≤(Σ) that includes
a.

3.3.5 Constructions

In recent work on separation logic and related formalisms [JB12, KTDG12,
LWN13, DYGW10], each module of the program can have its own sepa-
ration algebra, so the task of verifying a module includes coming up with
a separation algebra suitable for it and checking the conditions in Defini-
tion 3.3. While this is already much simpler than proving that something is
a complete BI algebra, we can make it even simpler still, because separation
algebras are very compositional. The following proposition is adapted from
[DHA09] and [JB12].

Proposition 3.8. Given separation algebras (Σ1, ·1, U1) and (Σ2, ·2, U2) and
an arbitrary type T ,

1. The product Σ1 × Σ2 is also a separation algebra with unit U1 × U2

and composition (a1, a2) · (b1, b2) , (a1 ·1 b1)× (a2 ·2 b2).

162

162



2. The tagged union Σ1 + Σ2 , ({1} × Σ1) ∪ ({2} × Σ2) is also a
separation algebra with unit U1 + U2 and composition as the smallest
relation satisfying (i, a) · (i, b) = {i} × (a ·i b) for i ∈ {1, 2}.

3. The set T can be viewed as a discrete separation algebra T discr if
we define the units as U , T and composition as the smallest relation
satisfying t · t = {t}.

4. The space T fin→ Σ1 of finitely-supported functions is a separation
algebra. Being finitely supported means that only a finite number of
values from the domain are mapped to non-unit values. The units are
the functions mapping everything to some unit, and composition is
pointwise:

U , {f | ∀t. f(t) ∈ U1}
f · g , {h | ∀t. h(t) ∈ f(t) ·1 g(t)}

Proof. See [BJ] for items 1,2,4. See [DHA09] for item 3. �

The space of finitely-supported functions (fin→) has good composition
properties. In particular, it allows currying, so the set (A × B) fin→ Σ is
isomorphic to the set A fin→ (B fin→ Σ). This is in contrast to the space of
finite partial functions (fin⇀), which does not have this isomorphism [Par05]
since the curried form allows distinguishing between the values [] (the empty
map) and [a 7→ []] (a singleton map that maps a to the empty map). We
found that proofs of deallocation in fictional separation logic [JB12, JB11]
became much simpler when using (fin→) instead of (fin⇀).

We will in practice need more constructions than those given in Propo-
sition 3.8. In fictional separation logic [JB12], we found it useful to revive
the concept of a permission algebra [COY07], which is like a separation
algebra but without units:

Definition 3.4. A permission algebra is a pair (Π, ·) where (·) : Π×Π →
P(Π), and the following holds

1. Commutativity: a ∈ a1 · a2 ⇒ a ∈ a2 · a1
2. Assoc.: a12 ∈ a1 · a2 ∧ a123 ∈ a12 · a3 ⇒ ∃a23 ∈ a2 · a3. a123 ∈ a1 · a23 �

A similar but more restrictive definition is given in [Hob11] and used for
the same purpose: to serve as an intermediate structure when composing a
separation algebra.

Proposition 3.9.

1. Permission algebras form products and tagged unions just like separa-
tion algebras do.
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2. A permission algebra Π together with a fresh unit element 0 can be
viewed as a separation algebra (Π)0 , Π ∪ {0} with units {0} and
composition defined as in Π for non-unit elements and as 0 · a =
a · 0 = {a} in other cases.

3. Any set T can be viewed as an equality permission algebra T= if
we define composition as the smallest relation satisfying t · t = {t}.

4. Any set T can be viewed as an empty permission algebra T∅ if we
define composition as t · t′ = ∅.

With these constructions, we can now redefine the heaps from Sec-
tion 3.3.1 as heap , loc fin→ (val∅)0. We have described the same separation
algebra (heap, ·, []) as before, but this time there is nothing further to define
or prove. The composition operation and its properties follow syntactically
from Propositions 3.8 and 3.9, and the fact that P(heap) forms a complete
BBI algebra follows from Corollary 3.1.

We can also define heaps with permissions [BCOP05, Hob11] for any
permission algebra Π as heapΠ , loc fin→ (val=×Π)0. For further examples,
see [JB12, JB11].

As already mentioned, the study of separation algebras is still at an
early stage, and the constructions presented here could soon be superseded
by better ones. Not all definitions of separation algebra support all the
constructions; in particular, multiple units are needed to support tagged
unions and discrete separation algebras [DHA09]. For most of the alternative
definitions of separation algebras discussed in Section 3.3.3, none of the
constructions have been verified. One exception is [DHA09], which proposes
several specialisations of separation algebras and verifies that each one is
preserved by all constructions.

3.3.6 Cyclic definitions

Advanced separation logics often feature instrumented heaps that can “store”
assertions. Examples of such stored assertions include the invariant asso-
ciated with a storable lock [GBC+07], the operations allowed on a shared
resource [DYDG+10], or the precondition of a procedure stored in memory
[NS06].

A representative example of this situation, inspired by models of storable
locks, could be the following attempt to define heaps:

Σ = loc fin→ ((val × asn)∅)0

If asn = P≤(Σ) as usual, then this definition becomes cyclic, with Σ in a
negative position:

Σ = loc fin→ ((val × P≤(Σ))∅)0
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There is no set-theoretic solution to this equation, so it cannot be used as a
definition.

A comprehensive treatment of the techniques that apply here is beyond
the scope of this text, but the solutions can roughly be grouped into three
types, ordered here by increasing expressiveness of the resulting logic.

1. Store a syntactic assertion [VN13, DYDG+10] or token [GBC+07] in-
stead of a semantic assertion. This can work well enough for first-order
theories.

2. Use step-indexing or similar techniques [AMRV07, DHA09, BRS+11]
to guard the recursive occurrence. This essentially creates an approx-
imation of the recursively-defined heap up to n+1 recursive iterations,
exploiting that a program that has only n steps of execution left will
not have time to observe what lies beyond that depth in the heap when
a heap dereference takes one step. Specification validity then means
that the program is valid for arbitrary values of this n.

3. The separation logic can be developed in a metalogic that does not re-
strict recursive occurrences to being strictly positive in the traditional
sense. The topos of trees [BMSS12] has recently been proposed for
this purpose; it allows negative occurrences as long as they are guarded
by a modal operator .. In the model of the topos of trees, this modal
operator is explained in terms of step-indexing, so this technique is
sound for essentially the same reason as item 2 above.

See [SB13a] for a recent example of using the topos of trees as the
metalogic of an impredicative concurrent separation logic.

Step-indexing in logical propositions, rather than types, are discussed in
Section 4.2.2.

3.4 Program variables

We have so far discussed assertions quite abstractly, but ultimately they are
of course used in pre-and postconditions of commands, and they must be
able to describe the values of program variables as named in the source
program. The exact technique will necessarily be specific to the program-
ming language, but there are some common patterns and even some reusable
theory just like there was for heaps.

Using a shallow embedding gave us typed logical variables practically
for free, but there is no such shortcut for program variables. Fortunately,
program variables still tend to be simpler to support than logical variables
since program variables tend to have a more restricted binding structure.

When every formal detail has to be right – especially when working in
a proof assistant – then there are many pitfalls in the encoding of program
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variables. This section surveys the techniques that have been proposed for
handling program variables in various programming languages. The goal is
to make program variables behave much like logical variables, which is the
tradition in Hoare logic, while still retaining all the benefits of a shallow
embedding.

The semantics of a programming language tends to divide the state into
a heap and a stack (i.e., stack frame). Shared mutable data lives on the
heap, while the content of local variables lives on the stack. Some authors
use the term store instead of stack. Stacks in While-like toy programming
languages are typically modelled as stack , var → val . This also suffices for
modelling many realistic languages such as Java [PB05, BJSB11] or assembly
[CSV07, Myr10, JBK13], where the type var is chosen as strings or register
names respectively.

Other languages have more complex stacks, where a simple mapping
from variables to values does not suffice. This tends to happen when the
language enables access to the L-value of local variables, either with an ex-
plicit address-of operation as in the C programming language, or implicitly
through variable capture [SBP10]. Complications may also arise in concur-
rent languages, where the stack becomes shared when threads fork. Variable
scoping rules in JavaScript is a whole research topic in itself [GMS12].

The rest of this section assumes that (instrumented) machine states can
be modelled as stack × heap for some definition of heap. Even separation
logics for the C programming language adopt this model and simply disallow
access to the address of local variables [AB07, TKN07, JSP12, AM13].

Using the constructions from Section 3.3.5, there are at least two useful
ways to turn the whole machine state into a separation algebra.

1. If we let stack be a discrete separation algebra, then the product
stackdiscr × heap is a separation algebra whose composition is defined
by

(s, h) ∈ (s1, h1) · (s2, h2) ⇐⇒ s = s1 = s2 ∧ h ∈ h1 · h2
With a standard construction to form a complete BI algebra from
stackdiscr × heap, such as Corollary 3.1, we obtain the same definition
of ∗ as in the vast majority of separation-logic texts:

P ∗Q ≡ {(s, h) | ∃h1, h2. h ∈ h1 · h2 ∧ (s, h1) ∈ P ∧ (s, h2) ∈ Q}

A drawback of this approach is that it typically requires a syntactic
side condition on the frame rule to say that variables free in the frame
R must not be modified by the command c:

{P} c {Q} modifies(c) ∩ fv(R) = ∅
{P ∗R} c {Q ∗R}
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A simple way to get rid of this side condition is to make local variables
immutable [BTSY06], but this can of course be a major restriction of
the programming language.

2. We can alternatively define stacks almost like heaps: stack = var fin→
(val∅)0. This approach is known as variables as a resource, and
the original paper about this idea [PBC06] goes even further and adds
fractional permissions perm, defining stack = var fin→ (val= × perm)0.

With variables as a resource, we get a more aesthetically-pleasing
frame rule because the syntactic side condition essentially becomes
integrated into the definition of ∗.

{P} c {Q}
{P ∗R} c {Q ∗R}

This is also formally better in cases where modifies(c), the set of local
variables potentially modified by c, is not easy to determine. This hap-
pens in languages where we cannot syntactically see from a program
what variables might be modified, or when that over-approximation is
too coarse [JBK13, MG07].

The drawback is that the convenient similarity between program vari-
ables and logical variables is lost. Program variables have to be treated
like heap locations using some type of points-to predicate, which com-
plicates the rules for variable assignment and conditionals [PBC06]
[DYBG+13, Definition 17].

3.4.1 Open terms and lifting

The two constructions above allow us to have program variables in asser-
tions, but that was only half of the problem. We also need program variables
in expressions, including logical expressions that are not part of the program-
ming language. For instance, we might like to assert that n > m + 1, where
n and m are written in a sans-serif font because they are program variables;
i.e., symbols of type var .

If we are using variables as a resource, the example assertion above could
be written as

∃m. m 7→m ∗ ∃n. n 7→ n ∧ 〈n > m+ 1〉.
Notice first the distinction between the variable name m and its value m,
which makes the formula somewhat verbose. Syntactic sugar has been pro-
posed to reduce this somewhat [PBC06], but it comes at a price: expected
identities such as e1 6= e2 ≡ ¬(e1 = e2) fail to hold. On the other hand, the
verbosity is not much of a burden in assembly language, where the “pro-
gram variables” are uninformative register names, and their values tend to
be named differently from the registers that hold them [JBK13, MG07].

167

167



The rest of this section tries to follow the Hoare-logic tradition of refer-
ring to program variables from deep inside expressions. As a first step, our
example assertion of n > m + 1 can be written formally as

{(s, h) | s(n) > s(m) + 1},
but this is undesirable as it exposes the stack s, which increases verbosity
and looks quite different from standard presentations. With some amount
of syntactic sugar, it can be made practical, though [McC09].

In Charge! [BJB12, BJ], a Coq formalisation of separation logic, we
distinguish between assertions and open assertions, which I will denote here
as

asn , P(heap) and open asn , stack → asn

respectively. The type open asn is a complete BI algebra, and it is in fact
isomorphic4 to P(stackdiscr × heap). In general:

Proposition 3.10. Given a complete BI algebra A and a preordered type
(T,≤), the space of monotonic functions T →≤ A is a complete BI algebra,
where

T →≤ A , {f : T → A | ∀t, t′. t ≤ t′ ⇒ (f(t) ` f(t′))}
and the operators of T →≤ A are defined in terms of the operators on A:

P ∗Q , λt. P (t) ∗Q(t)

emp , λt. emp

P −∗ Q , λt. ∀t′ ≥ t. P (t′) −∗ Q(t′)

The Heyting operators are defined as in Proposition 3.2 (page 152).

Proof. See [BJ], Lemma BILPreLogic. �

We can extend the definition of open asn to arbitrary types T :

open T , stack → T

This allows us to give a uniform treatment of free variables and substitutions
on open terms regardless of their type. We can lift functions to work on
open terms, ranged over by o:

Definition 3.5. Given an n-ary function f : (T1 × · · · × Tn) → T , define
ḟ : (open T1 × · · · × open Tn)→ open T as

ḟ(o1, . . . , on) , λs. f(o1(s), . . . , on(s)).

We lift constants t : T to ṫ : open T , by taking n = 0 above. Finally,
we overload the same notation to mean something different for program
variables x : var , defining ẋ : open val as ẋ , λs. s(x). �

4They are isomorphic as complete BI algebras, meaning that the isomorphism preserves
all operators.
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Returning to our example assertion, we may now write it formally as

ṅ >̇ ṁ +̇ 1̇.

We can just as easily lift functions from the metalogic that do not also exist
as programming-language expressions; for instance, given fac : N → N, we
can express that variable n holds the factorial of variable m as

ṅ =̇ ˙fac(ṁ).

As a final and important example, we can lift operators on types that have no
representation in the programming language; e.g., list cons and recursively-
defined list predicates [BJB12]. This lets us give a satisfying formal account
of how we reason with arbitrary mathematics inside assertions, without im-
plicitly assuming that the theories we need have been reconstructed from
scratch within open asn.

While the benefits of open T presented thus far could be dismissed as
being superficial, we found in [BJSB11]5 that the lifting concept was cru-
cial for harnessing the abstraction and modularity benefits of higher-order
separation logic. It is a standard pattern of specification in higher-order
separation logic to quantify and parametrise over assertion-logic predicates
[BBTS05, PB08, BJSB11]. This means that formulas tend to involve opaque
predicates F , and eventually we will have to ask what are the free variables
of, say, F (e). One would hope that fv(F (e)) ⊆ fv(e), but this depends on
the definition of F . Examples of “undisciplined” F include

F (e) = e =̇ ẋ

F (e) = e[y/x] =̇ 0̇

F (e) = 〈x ∈ fv(e)〉

If there is only one type of assertions, P(stack×heap), then it is difficult
to statically rule out such undesired values in a shallow embedding. See the
discussions in [App06], where side conditions about free variables and sub-
stitutions have to be carried around with predicates. In contrast, the lifting
approach always gives us well-behaved free variables and substitutions. The
following two subsections will define semantic notions of free variables and
substitutions such that the following holds:

fv(ḟ(o1, . . . , on)) ⊆ fv(o1) ∪ . . . ∪ fv(on)

ḟ(o1, . . . , on)[ē/x̄] = ḟ(o1[ē/x̄], . . . , on[ē/x̄])

For further examples and motivation, see [BJSB11, BJB12].

5 In that paper, open T is called sm T , and lifting is written f̂ instead of ḟ .
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3.4.2 Free variables

Following Appel et al. [AB07], we can characterise free variables semantically
by saying that x is free in o : open T when a change to x can cause a change
to o:

fv(o) , {x | ∃s, v. o(s) 6= o(s[x := v])}
An open term can have an infinite number of free variables; for instance,

every variable is free in ∀x : var . ẋ =̇ 0̇. We might like to forbid such terms,
but it can be hard to do without restricting expressiveness, and it turns
out we do not need to. Compare this to nominal logic [Pit01], which is
much more well-behaved. There, open terms have a finite number of free
variables and elegant support for binders in the programming language, but
the approach requires the entire metalogic to be replaced.

The definition of fv satisfies convenient rules for how it applies to pointwise-
lifted functions and to variables:

fv(ḟ(o1, . . . , on)) ⊆ fv(o1) ∪ . . . ∪ fv(on)

fv(ẋ) ⊆ {x}

The property on ḟ only holds with inclusion, not equality, since a variable
may not be semantically free even if it occurs in an expression – for instance,
fv(ẋ −̇ ẋ) = ∅. The property on ẋ of course holds with equality for any non-
trivial choice of val .

3.4.3 Substitutions

It is standard, both in deep and shallow embeddings, to define a substitution
ρ : subst as a function from variables to expressions, which here means

subst , var → open val

Expressions, ranged over by e, are of type open val in their shallowly-
embedded form. A simultaneous substitution of n distinct variables can
be defined as

[e1, . . . , en / x1, . . . , xn] , λx.
{
ei if x = xi for some i

ẋ otherwise

We can then define a semantic notion of applying a substitution to an
open term. This is written here with postfix notation as per tradition, and
it is defined in terms of applying a substitution to a stack.

oρ , λs. o(sρ), where

sρ , λx. ρ(x)(s)
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From these definitions, we can prove as lemmas how substitution acts
on pointwise-lifted functions and on variables.

(ḟ(o1, . . . , on))ρ = ḟ(o1ρ, . . . , onρ)

(ẋ)ρ = ρ(x)

Contrast this to how substitutions work in a deep embedding: the lem-
mas above about how ρ acts on ḟ and ẋ would be taken as the definition of
substitution on syntactic terms, and our definition of oρ would instead be
proved as a lemma [SBP09, Lemma 10] [Kri12, Lemma 28.2.a.ii].

3.4.4 Typed values

Separation logic is often applied to typed programming languages such as
Java [Par05, BJSB11] or C [TKN07, AB07]. The typical approach is then to
generalise the syntax and operational semantics to remove static types and
let the separation logic enforce typing instead – a program logic generalises
a simple type system, so it is a burden to have both. It is standard [Rey02,
AB07, McC09, TSFC09, SBP10, BJSB11] to do as we have been doing since
Section 3.3.1 and define a type val as a tagged union of integers, pointers,
Booleans and any other types that can be stored in local variables or on the
heap.

The question is then whether an arithmetic operator, such as >, should
have type val × val → val or int × int → bool . In the first approach, we can
immediately write logic expressions such as ẋ >̇ ẏ, and the types will match
up. On the other hand, we need to have an answer for how to compare,
say, a pointer with a Boolean, even though such a comparison could never
happen in the original, typed, programming language. This issue extends
to any other operator we want to lift from the metalogic.

In the other approach, where (>) : int × int → bool , we cannot write
ẋ >̇ ẏ, since >̇ has type open int × open int → open bool while ẋ and ẏ have
type open val . One option is to read variables not as an untyped ẋ : open val
but as a typed intvar(x) : open int etc. Then we can write intvar(x) >̇
intvar(y). The problem that a value could have an unexpected type is now
replaced with the problem that a variable can have an unexpected type, and
intvar will have to return a dummy value, such as 0, if it reads a non-int .

We have tried both approaches in Charge! [BJSB11, BJB12], and they
both ended up littering specifications and proofs with distracting coercions
in and out of val .

A third approach is to make expression evaluation partial [PBC06, AB07],
but this has its own set of problems; for instance, expected identities such
as e1 6= e2 ≡ ¬(e1 = e2) no longer hold [PBC06]; here, ( 6=,=) are partial
expressions, and ¬ is from the assertion logic. Despite this, many authors
model stacks as partial functions without explaining what happens when
lookup fails.
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It is worth looking at two separation logics that are not affected by these
problems at all, even down to the last formal detail.

• In [JBK13, KBJD13], we define a separation logic for x86 machine
code. Assertions are of type P(Σ), where

Σ = (register fin→ (DWORD∅)0)×
(flag fin→ (bool∅)0)×
(DWORD fin→ (BYTE ∅)0)

The three components in the product denote CPU registers, CPU flags
and main memory respectively; types BYTE and DWORD denote
bool8 and bool32 respectively.

The registers and flags together can be thought of as the local variables
– the stack, in our current terminology – and this stack can store both
DWORD and bool values. The separation-algebra annotations on Σ
reveal that we are using the variables-as-a-resource approach, but this
is not the essence of why types on the stack work out here. It works
because there is a separate name space for the registers and flags; i.e.,
EAX is a register, and it is clear from its name only that it holds
a DWORD and not a bool . This approach can also work in more
conventional programming languages [CGZ05].

The main memory can be thought of as the heap in our current termi-
nology. Types on the heap work out for a completely different reason
than for the stack. To let us store other things than BYTE s in mem-
ory, there is essentially a points-to predicate 7→T for every type T
that has a defined decoding from byte sequences to T . Then l 7→T v
holds when v : T , and the memory contents starting at l decodes to v.
See also [TKN07, AM13] for related approaches with slightly different
goals.

• Another approach is to not replace the type system with a program
logic but instead extend the type system until it becomes as powerful
as a program logic. Programming-language terms with side effects,
such as heap write, are given a type describing those effects, such
as {P}{Q}, where P and Q can refer to program variables. Logical
entailment is encoded as subtyping.

Examples include [BTSY06, NAMB07, Pot08, KTDG12]. Since this
requires either a deep embedding or reverification of the whole metathe-
ory [NMS+08, CMM+09], we lose the advantages gained from having
a shallow embedding. Features such as higher kinds and dependent
types must be re-created within the type system rather than borrowed
from the metalogic. See also the discussion in Section 4.3.2.
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The unproblematic logics mentioned above have one thing in common:
they do not define a val type, but instead they keep all programming-
language types explicit and separate.

The problem also seems to go away when using variables as a resource.
Recall the example from Section 3.4.1, where we wrote

∃m. m 7→m ∗ ∃n. n 7→ n ∧ 〈n > m+ 1〉.

In a setting where the injection from int to val is called intval , we can write
this assertion more explicitly as

∃m : int . m 7→ intval(m) ∗ ∃n : int . n 7→ intval(n) ∧ 〈n > m+ 1〉.

This solves the problem and can be useful for any type T with an injective
function T → val . On the other hand, variables as a resource remains very
verbose and does not look like standard Hoare logic.

The above pattern for getting typed program variables using a stack
version of points-to predicate will work just as well for any standard heap
points-to predicate. Since separation logic, with very few exceptions [SJP10,
PS12], forbids direct heap references in expressions, we are already forced
into this pattern of existential quantification and distinction between a heap
location and its value, so this may as well be used to get stronger typing.

4 Specifications

The primitive unit of specification in separation logic is usually the Hoare
triple. In the most basic form, in a shallow embedding, the triple is a
predicate in the metalogic. Section 4.1 discusses definitions and inference
rules for the triple based on this assumption.

Section 4.2 will demonstrate benefits and techniques for considering the
triple instead as a formula of specification logic [Rey82], which allows us
to give a logical account of the context in which a given triple holds.

4.1 Hoare triples

4.1.1 Definitions

The Hoare triple is where the assertion logic from Section 3 meets the oper-
ational semantics from Section 2. The Hoare triple for partial correctness
is usually defined to mean, intuitively, “for any state satisfying the precondi-
tion, no execution from that state will crash, and any terminating execution
from that state will result in a state satisfying the postcondition”. In the
most basic form, the triple is defined as

{P} c {Q}1 , ∀σ ∈ P. ¬(σ, c fail) ∧
∀σ′. σ, c σ′ ⇒ σ′ ∈ Q
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For partial correctness, we are content with ignoring divergence, but we will
not ignore failure.

Contrast this to total correctness, where we additionally require the
command to terminate from any state satisfying the precondition. If there
is a relation σ, c ∞ meaning that σ, c may diverge, then a basic definition
of the Hoare triple for total correctness can be

[P ] c [Q]2 , ∀σ ∈ P. ¬(σ, c fail) ∧ ¬(σ, c ∞)
∀σ′. σ, c σ′ ⇒ σ′ ∈ Q

The relation σ, c ∞ is a simple coinductive definition for a small-step
semantics, and it was discussed for big-step semantics in Section 2.1. An-
other approach is to describe the absence of failure and divergence together
in one predicate [Nip02].

If the semantics is deterministic, then total correctness can be defined
much more succinctly as

[P ] c [Q]3 , ∀σ ∈ P. ∃σ′. σ, c σ′ ∧ σ′ ∈ Q

Total correctness is treated only in a minor portion of the separation-logic
literature. It can be argued that there is no practical difference between a
diverging program and one that terminates after a million years, but total
correctness is nevertheless important for discovering bugs. See [Atk10] for
an interesting take on amortised running-time analysis with separation logic.

The remainder of this chapter will discuss partial correctness only, but
most concepts can be extended to total correctness.

The triples defined above all satisfy the rule of consequence and the
existential rule:

P ` P ′ {P ′} c {Q′} Q′ ` Q
{P} c {Q}

∀x. {P (x)} c {Q}
{∃x. P (x)} c {Q}

Whether they satisfy the frame rule, however, depends on whether the
operational semantics satisfies the frame property and safety monotonicity6,
as discussed in Section 2. If these properties should not hold, we can still
get the frame rule by instead defining the triple as follows:

{P} c {Q}4 , ∀R. {P ∗R} c {Q ∗R}1
With this definition, we are guaranteed to have the rule of consequence, the
existential rule and the frame rule. The technique was first used [BTSY06]
in the setting of a higher-order programming language, where it was not
clear how to define the frame property, let alone prove it [RS06, BRSY08].

The new triple, {P} c {Q}4, is sound with respect to {P} c {Q}1 but
may not be complete. For example, if the memory allocator is determinis-
tic and always allocates the smallest free location [YO02], then we can no

6 Safety monotonicity is not required for an affine assertion logic [BJSB11].
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longer prove a triple that describes this fact; we can only prove the usual
triple for allocation, where the new location is existentially quantified in the
postcondition. This can be considered a shortcoming of the theory or a gain
in abstraction, depending on viewpoint.

So far, we have implicitly assumed that assertions belong to a complete
BI algebra of type P≤(state) as constructed in Section 3.3.4, where state
is the type of states in the operational semantics. But interesting sepa-
ration logics often have some form of instrumentation, or annotations, in
the assertions that is not present in the operational semantics. One exam-
ple is fractional permissions [BCOP05], where each heap location has a
permission value as well as a data value.

A powerful pattern for defining a triple in such cases has recently emerged
[DYBG+13, JB12]. A function reify : asn → P(state) is defined to translate
from instrumented assertions to machine state. Then the triple can be
defined as

{P} c {Q}5 , ∀R : asn. {reify(P ∗R)} c {reify(Q ∗R)}1
We still require asn to be a complete BI algebra, but P(state) need not be.
If we additionally require reify to preserve existentials7 and to be covariant
with respect to entailment8, then the rules of consequence, existential and
frame all hold for this triple. Those two properties always hold [JB11,
DYBG+13] if asn has been constructed from a separation algebra Σ like
in Section 3.3.4 and the reify function has been lifted from some f : Σ →
P(state) as

reify(P ) =
⋃

a∈P
f(a)

4.1.2 Structural rules

An inference rule is informally called a structural rule when all Hoare
triples in it have the same universally-quantified c as their command.

We have already discussed the rule of consequence, the existential rule
and the frame rule:

P ` P ′ {P ′} c {Q′} Q′ ` Q
Consequence{P} c {Q}

∀x. {P (x)} c {Q}
Exists{∃x. P (x)} c {Q}

{P} c {Q}
Frame{P ∗R} c {Q ∗R}

In Section 1.2, I attempted to motivate why these three rules are essential in
a separation logic. Any Hoare triple that does not satisfy these rules should
come with a good explanation of why not.

7 Means that reify(∃x : T. P (x)) =
⋃

x:T reify(P (x)).
8 Means that P ` Q implies reify(P ) ⊆ reify(Q).
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There are a few variations on the above rules. Many authors print the
existential rule as

∀x. {P (x)} c {Q(x)}
Exists′{∃x. P (x)} c {∃x. Q(x)}

This has a somewhat satisfying symmetry to it, but it is derivable from
Exists and Consequence.

The disjunction rule and vacuity rule [Rey11] shown below are deriv-
able from Exists because ∨ and ⊥ can be seen as special cases of the exis-
tential quantifier as shown in Section 3.2.2.

{P1} c {Q} {P2} c {Q}
Disjunction{P1 ∨ P2} c {Q}

Vacuity{⊥} c {Q}

Like the existential rule, the disjunction rule often appears in the literature
in a more symmetric but redundant form.

As discussed in Section 3.4, the frame rule typically comes with the side
condition that modifies(c)∩ fv(R) = ∅. We have explored a variation of the
frame rule in the Charge! platform [BJB12, BJ], where that side condition
is replaced by a substitution:

{P} c {Q}
Frame{P ∗R} c {Q ∗ ∃v̄ : val . R[v̄/modifies(c)]}

The notation is meant to suggest that if modifies(c) = {x1, . . . , xn}, then
∃v̄ : val . R[v̄/modifies(c)] means

∃v1, . . . , vn : val . R[v1, . . . , vn / x1, . . . , xn]

Essentially, instead of preventing the frame rule from being applied at all,
we weaken it to the extent needed for it to hold. This rule is not formally
stronger than the standard one, but it allowed us to develop a separation
logic without the concept of free variables, which meant there was one less
concept to build theory and automation for.

Finally, the conjunction rule is of some interest:

{P} c {Q1} {P} c {Q2}
Conjunction{P} c {Q1 ∧Q2}

This rule holds for simple definitions of the Hoare triple, such as {P} c {Q}1
through [P ] c [Q]3 above, but it fails for many other definitions. Much
has been written about what restrictions must be placed on the logic for
the conjunction rule to hold [OYR04, BTSY06, O’H07, DYGW11, GBC11,
JB11], but comparatively little has been written about why this rule is useful
at all.
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Some generalisations of the conjunction rule have been proposed. When
it holds for binary conjunctions, then it typically also holds for universal
quantification over a non-empty domain [Rey11, DYBG+13]:

∀x : T. {P} c {Q(x)} T 6= ∅
Universal{P} c {∀x : T. Q(x)}

In fictional separation logic [JB11], the conjunction rule is generalised to
the recombination rule, parametrised over a binary operator 2:

{P} c {Q1} {P} c {Q2}
Recombination{P} c {Q1 2Q2}

This rule holds for 2 = ∧ in some cases and for 2 = ∗ in other cases [JB11].

4.2 Specification logic

4.2.1 Example: procedure map

The machine state of more realistic languages contains more than a stack
and a heap. A language with procedures could, for example, have some
form of map m : M from procedure names to their implementation code.
The map could in principle be added to the machine state alongside the
stack and heap, so states would be σ = (s, h,m). But when no command
can modify m, at least in a big-step sense, it becomes redundant to have
m repeated in the operational semantics on both sides of  . It is equally
redundant in Hoare triples to repeat facts about the m-component in both
pre- and postcondition.

The solution in big-step semantics is to separate the state σ that may
change after running a command from the state m that may not. A big-
step operational semantics is then a relation of the form σ, c  m σ′, and a
similar relation could be derived from a small-step semantics. The Hoare
triple could be extended analogously, yielding a quadruple; e.g.,

m  {P} c {Q}6 , ∀σ ∈ P. ¬(σ, c fail) ∧
∀σ′. σ, c m σ′ ⇒ σ′ ∈ Q

This definition is not very practical, though: it requires all quadruples to
carry the m-parameter even though it is only relevant when c is a procedure
call.

The solution is to define a logic spec of specifications [Rey82] in which,
intuitively, the truth value of a formula is measured by how many m it holds
for. The Hoare triple is a formula in this logic, defined along the lines of

{P} c {Q}7 , {m | m  {P} c {Q}6}

177

177



The triple now appears to have only three parameters – the m-parameter
has been hidden just like the heap is hidden in the assertion logic. Defining

spec , P≤(M)

for an appropriate preorder, spec is a complete Heyting algebra, defined with
a Kripke model as in Proposition 3.1 (page 152).

It remains to choose the preorder. Since separation logic emphasises
local and modular reasoning, it is beneficial to let the preorder be the ex-
tension ordering v on M . This ensures that any specification that holds for
procedure map m also holds in any m′ w m, thus enabling local reasoning
for procedures just as the frame rule enables it for heaps.

We must then show closure under v for all atomic formulas in spec,
while the Kripke construction guarantees it for the logical connectives. If
the big-step relation is closed under extension of the m-component, then we
have {P} c {Q}7 ∈ Pv(M) as desired. Otherwise, a technique similar to
that used in {P} c {Q}4 applies, and we can define a {P} c {Q}8 ∈ Pv(M):

{P} c {Q}8 , {m | ∀m′ w m. m′  {P} c {Q}6}

We can additionally define a primitive specification f(x̄) 7→c to say that a
procedure f has parameters x̄ and body c. Despite the similarity to points-
to for heaps, no one has yet found a good reason to separate specifications
with ∗! With these ingredients, we can define a formula in Pv(M) to assert
that f has specification (P,Q):

f(x̄) 7→ {P}{Q} , ∃c. f(x̄) 7→ c ∧ {P} c {Q}

See [BJSB11, JBK13] for details and variations on the this formula.
Note that if local reasoning for procedures is not desired, and the proce-

dure map is static and global, then a much simpler technique applies: make
the whole theory parametric in this map [Nip02, PB05, BJSB11]. This is
the most common approach, but it results in logics that are not formally
modular because there is formally a different theory of program verification
for each program! That is, given a program fragment (with its procedure
map), one obtains a theory in which to verify this one fragment. When mul-
tiple fragments have been verified this way, each in their own theory, there is
no explicit theorem that tells us that the specifications of all the fragments
are guaranteed valid in the theory obtained for the composite program.

4.2.2 Other examples

Above, we saw just one example of what a specification logic can do. A rule
of thumb is that any state that remains unchanged across commands belongs
in the specification logic, and any other state belongs in the assertion logic.
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The specification logics considered here are complete Heyting algebras,
constructed using the techniques in Section 3.1.3.

Below are some additional applications of specification logic. The various
ingredients in the model of specifications tend not to interfere, so a full-
featured specification logic can be modelled as P≤1,...,≤n(T1 × · · · × Tn),
generalising from the descriptions of P≤i(Ti) below.

Aliasing in call-by-name. The original specification logic by Reynolds
[Rey82] was used to describe procedure mappings, much as we saw
in Section 4.2.1, but also to assert non-aliasing between procedure
parameters in the call-by-name setting of ALGOL 60. Unlike heap
aliasing, which can be changed by commands, parameter aliasing stays
fixed throughout a scope and is thus a good candidate for describing
in the specification logic.

Immutable variables. Languages such as C and Java allow declaring cer-
tain variables as constant or immutable. In ML-like languages, all
variables are immutable. All such variables could be described in the
specification logic rather than the assertion logic. I have not seen this
done in practice, though.

Recursion. To aid in verifying recursive procedures, it has proved useful
to add natural numbers to the specification logic to count either the
depth of recursion [vO99, Nip02] or the number of execution steps
remaining [AM01, AMRV07, BJSB11]. This is known as step index-
ing. In both cases, specifications are downwards-closed sets of natural
numbers: spec = P≥(N). Intuitively, the truth value of a specifica-
tion measures how many steps of execution (or depth of procedure
calls) the specification will hold for; a valid specification holds for any
number of steps (or any depth of procedure calls).

This model enables the definition of a later-operator [Nak00, AMRV07,
DAB09, DAH08, JBK13] on specifications:

.S , {k | ∀k′ < k. k′ ∈ S}

Intuitively, .S means that S will hold after one step of execution (or
for recursive calls one level deeper). The rule for procedure calls then
requires only .(f(x̄) 7→ {P}{Q}) in its assumptions, and we can get
this assumption by applying the Löb rule with S = f(x̄) 7→ {P}{Q}:

.S ` S
Löb` S

Counting recursion depth clearly belongs in the specification logic be-
cause the depth cannot have changed after executing some c. On the
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other hand, counting steps of program execution can also be done use-
fully in the assertions, which allows for a .-operator in the assertion
logic [BJSB11].

Recursive specifications. A specification can be defined recursively just
like any other predicate, but this will always be subject to well-formed-
ness restrictions, typically requiring the recursive occurrence to be in a
positive position in the formula, or require a well-founded term to
become smaller with each self-application. For instance, the existence
of a specification S satisfying S ≡ S ⇒ ⊥ would render the logic
inconsistent9.

Having step-indexes in the specifications, as sketched above, allows
recursive definitions with a third type of well-formedness restriction:
contractiveness [AM01, DAH08, BRS+11]. This allows definitions in
which the recursive occurrence can be anywhere, as long as it is syn-
tactically under a .-operator. This allows defining an S such that
S ≡ (.S)⇒ ⊥. This was a silly example, but useful examples can be
found in [DAH08, BRS+11].

A powerful alternative to this would be to use a metalogic that has a
.-operator and then lift this into the separation logic. For an example,
see the work on impredicative CAP [SB13a], which uses the topos of
trees [BMSS12] as its metalogic.

Frames. Consider a small variation on {P} c {Q}4:

{P} c {Q}9 , {R | {P ∗R} c {Q ∗R}1}

Then specifications are predicates on assertions, and the validity of a
triple is intuitively measured by how many assertions can be framed
on to it. This immediately gives us a frame operator [BTSY05,
BTSY06, Kri12, JBK13], traditionally written ⊗, defined as

S ⊗R , {P | (P ∗R) ∈ S}

It satisfies the following identity, which allows us to write more concise
specifications that do not repeat assertions between pre- and postcon-
dition:

{P} c {Q}9 ⊗R ≡ {P ∗R} c {Q ∗R}9

As in the procedure-map example above, when we make spec a Kripke
model, we can extend any useful closure property from atomic specifi-
cations to the full logic. Here, we expect that the frame rule holds for
triples; i.e.,

{P} c {Q}9 ` {P} c {Q}9 ⊗R
9 Exercise! First prove S ` ⊥, which proves ` S, and together they prove ` ⊥.
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If so, we can extend the frame rule to all specifications by defining
spec = Pv(asn), where v is the extension ordering on the monoid
(asn, ∗, emp). This gives the following inference rule, called the higher-
order frame rule.

S ` S ⊗R
Under certain conditions, this rule allows framing invariants onto triples
in negative positions of an entailment, whereas the ordinary frame rule
only allows it for positive positions. Examples of its utility as a second-
order frame rule are found in [OYR04, BTSY06, JBK13]; an example
of using it as a third-order frame rule is in [BTSY06].

4.2.3 Structural rules in specification logic

The structural rules discussed in Section 4.1.2 can now typically10 be entail-
ments in the specification logic rather than the metalogic. For example, the
existential rule becomes

Exists∀x. {P (x)} c {Q} ` {∃x. P (x)} c {Q}

To get a presentation that looks more standard, it is customary to quantify
over all specifications S and instead print the rule as

S ` ∀x. {P (x)} c {Q}
Exists

S ` {∃x. P (x)} c {Q}

If specifications can be usefully embedded in assertions, then the rule of
consequence can also make use of this S; see the consequence rule in [PB08]
for an example.

4.3 Alternative formulations

An assertion logic, as developed in Section 3, can also serve as ingredient in
other theories than the specification logics defined above. A brief overview
is given here.

4.3.1 Rigid specification logics

The specification logics described above are complete Heyting algebras and
thus full higher-order logics. Less expressive and more disciplined logics
have also been proposed. In particular, the logic of Parkinson and Bierman
[PB08], extended by van Staden and Calcagno [vSC10], stands out as a
specification logic that is expressive enough to specify most object-oriented
code but requires specifications to follow a rigid structure that is essentially
a mirror image of the class structure of an object-oriented program.

10 I know of one exception to this: the higher-order frame rule in [SBRY11].
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Several challenging specifications have been expressed in this system
[PB08, DP08]. On the other hand, the extensions made in [vSC10] cer-
tainly extended the range of useful specifications that could be expressed
even though the original system perhaps seemed powerful enough at first
glance. It is likely that a third case study would expose the need for fur-
ther extensions, and so on. Essentially, these rigid logics need almost all
the features of a complete Heyting algebra: auxiliary variables are univer-
sal quantifiers, abstract predicates are existential quantifiers, specification
refinement is entailment, specification combination is conjunction, and so
on.

When the specification logic is a complete Heyting algebra from the
beginning, there is more freedom to use it in new ways without requiring
extensions. Rigid specification logics can then be built on top as needed,
hopefully reducing the burden of the soundness proof for these.

Compare [KAB+09, BJSB11], where programs are specified in a separa-
tion logic in which both specifications and assertions are higher-order logics.
The drawback is that specifications can be hard to understand when their
structure does not follow a known pattern. They can be more or less verbose
compared to a specification in a rigid framework, depending on whether that
framework is a good fit for the code at hand.

Rigid logics seem to be a good fit to model stand-alone verification tools
with extensive automation [vSC10, DP08, JSP12]. Full higher-order logics
tend to be embedded in proof assistants such as Coq and HOL, where au-
tomation is guaranteed to be sound but runs orders of magnitude slower
[CMM+09, Chl11, Chl13, McC09, Tue09, MSBS12, BJB12, JBK13].

4.3.2 Type systems

It is possible to formulate a separation logic as a type system. Type inference
will of course be undecidable, and type checking will require annotations
corresponding to proofs in a program logic.

In Hoare type theory [NMB08, NAMB07, PBNM08], a computation has
a monadic type, similar to the IO monad in Haskell but with pre- and
postcondition annotations. Ignoring variable contexts, the typing judgement
c : {P} x:A {Q} means that computation c has precondition P and returns
a value of type A, bound as x in postcondition Q. Essentially, their types
correspond to our specifications. Pre- and postconditions are predicates on
the heap, almost exactly as we defined them in Section 3.

In the type system of Pottier [Pot08, SBP+12], as well as Krishnaswami
et al. [KTDG12], their types essentially correspond to our assertions. Like
in ML, a computation is a function, and the semantics has to be call-by-
value to serialise side effects predictably. A function that writes to a heap
cell has a dependent type along the lines of Πl. cap(l)× val → cap(l), where
cap(l) is an abstract capability to access location l. The capability and the
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function space are linear, and the capability is therefore returned again by
the function; otherwise, it would be lost to the caller. It is understood that
capability tokens will be compiled away, but they do have a representation
in the term language. Capability types can be composed with separating
conjunction, which makes these systems behave much like separation logic.

One thing to beware of when building a separation-logic type system
is the handling of logical variables. Consider for instance a procedure that
increments the value at a given heap location, specified in the style of Sec-
tion 4.2.1:

∀i. inc(x) 7→ {x 7→ i}{x 7→ i+ 1}
There is a clear distinction here between x, which has a run-time repre-
sentation, and i, which exists purely in the specification. If the arrow and
dependent-product types denote function spaces, as in the example with ca-
pabilities above, then there must be a different mechanism for quantifying
over a logical variable. Nanevski et al. proposed “binary postconditions”
[NVB10, NMS+08] for addressing this in Hoare type theory, but their so-
lution restricts the scope of logical variables to a single triple. Another
branch of Hoare type theory [CMM+09] proposed explicitly marking logical
variables as such, but this required extending Coq with an axiom whose
soundness has not been formally established. The type system in [BTSY06]
does not include logical variables, and thus it cannot specify inc. The original
system of Pottier [Pot08] had the same problem, but this was later addressed
[PP11] by adding logical universal quantifiers and singleton types, which is
also how [KTDG12] handles the problem.

5 Conclusion

At the time of writing this text, the ACM Digital Library lists 147 publica-
tions with the keyword “separation logic”. It is well known that these have
a lot in common underneath their cosmetic differences. Unfortunately, those
commonalities are typically treated as design patterns to draw inspiration
from when building a separation-logic theory from scratch, rather than a
formally reusable theory that can be built upon.

In this text, I have presented a core of standard definitions and theorems
in the hope that future texts on separation logic can take these for granted
rather than recreate them. Those definitions lead to expressive higher-order
logics without adding additional complexity over the first-order case.

In particular, a typical assertion logic should arise as the powerset of a
separation algebra, closed under a preorder. The interesting contribution
of future theories should be the choice of separation algebra and preorder,
while turning this into a logic is standard. Similarly, specification logics
are made easy since they arise from standard Kripke models, which auto-
matically contain all the operators and quantifiers needed for abstract and
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modular specifications. Finally, simple but fully formal treatment of pro-
gram variables can be achieved using open terms, although this is not as
widely applicable as the other theories mentioned.

At the same time, we have discussed the aspects that still remain patterns
and cosmetics. Variations in the operational semantics and Hoare triple are
necessarily language-specific, and there is rarely any formal reuse between
theories, but there are still many design patterns to be borrowed.

Much more ought to be said about concurrent separation logic and mod-
els that use guarded recursion, but these areas are still very much in flux.
Hopefully, general and reusable theories will eventually emerge from those
lines of research.

Acknowledgements. I would like to thank the proof readers – Jesper
Bengtson, Lars Birkedal, Aleš Bizjak and Marco Paviotti – for helpful feed-
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assertion logic, 142
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Hoare triple, 173
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instrumented semantics, 145
interference relation, 160
intuitionistic separation logic, 155

Kripke model, 152

Löb rule, 179
later-operator, 179
law of the excluded middle, 153, 155
lift, 168
linear, 183
local reasoning for procedures, 178
locations, 156
locks, 148
logical variables, 150

metalogic, 143
models, 150
monotonic counter, 160
multiple units, 158

non-deterministic monoid, 159
non-termination, 146

open terms, 168

parallel operator, 147
partial commutative monoid, 158
partial correctness, 173
permission algebra, 163
positive position, 180
precedence, 153
preorder, 152
product, 162
program variables, 150, 165
programming language, 142

recombination rule, 177
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relational monoid, 159
rule of consequence, 174

separation algebra, 158, 159
sequentially-consistent, 148
shallow embedding, 150
small-step, 145
specification logic, 142, 173
specifications, 143
stack, 166
step indexing, 179
step-indexing, 165
store, 166
structural rule, 175
stuck, 146
successful termination, 146

tagged union, 163
topos of trees, 165
total, 159
total correctness, 174

vacuity rule, 176
valid, 149
values, 156
variables as a resource, 167
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weakening of ∗, 155
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