
Techniques for model construction

in separation logic

Jonas B. Jensen

March 2014

Contents

1 Introduction 2
1.1 Overview . 2
1.2 What is a separation logic? 3
1.3 Contributions . 3

2 Semantics of the programming language 4
2.1 Modelling failure . 6
2.2 Modelling concurrency . 7

3 Assertion logic 8
3.1 Heyting algebras . 8
3.2 BI algebras . 13
3.3 Separation algebras . 16
3.4 Program variables . 25

4 Specifications 33
4.1 Hoare triples . 33
4.2 Specification logic . 37
4.3 Alternative formulations . 41

5 Conclusion 43

Index 45

1 Introduction

Separation logic has been very successful at giving concise specifications and
short proofs to pointer-manipulating programs. Unfortunately, the term
separation logic covers a whole zoo of different theories. Almost every pub-
lication that applies separation logic starts by defining a new logic that is
general enough to attack the problem at hand but not so general that it
disturbs the presentation with orthogonal features.

This proliferation of theories has been identified as a problem several
times [BBTS05, Par10], but that has not stopped the flow of new logics
being created. Given that no logic proposed so far is a generalisation of all
others, we should welcome more exploration and diversity for the foreseeable
future.

For new researchers in the field, the best sources for building an intu-
itive as well as formal understanding of separation logic are still the original
articles from 2001-2002 [Rey02, IO01]. Unfortunately, this leads many re-
searchers to ignore some of the recent advances that lead to more general
theories with simpler and more concise presentation and metatheory.

This chapter attempts to summarise those advances in the hope that it
will allow new research on separation logic to start from the cutting edge as
of 2013 instead of 2002. The reader is assumed to have some familiarity with
separation logic. A good place to start would be the 2002 introduction by
Reynolds [Rey02] or the 2012 tutorial by O’Hearn [O’H12]. More in-depth
theoretical discussions are found in [IO01] and [Rey11], although these are
still introductory texts.

The level of formal detail in this chapter will be quite high since it aims
to be useful for readers trying to encode separation logic in a proof assistant
or building a stand-alone tool.

1.1 Overview

The general recipe for making a separation logic, and the structure of this
chapter, is as follows.

1. Choose a programming language. Small variations in the definition
and semantics of the language can have great consequences for the ease
of building a separation logic for it.

2. Design the assertion logic; i.e., the formulas that describe machine
state. It typically includes separating conjunction and points-to formu-
las. Assertion-logic formulas are typically modelled as sets of machine
state subject to some instrumentation and/or side conditions.

3. Design the specification logic; i.e., the formulas that describe com-
putations. It typically includes Hoare triples, which refer to assertions

2

in their pre- and postconditions. In some higher-order settings, the
assertion logic may also refer to specifications, in which case the defi-
nitions of these two logics may have to be mutually recursive or may
coincide.

There is also an optional 0’th step: choose a metalogic; i.e., a math-
ematical framework in which to formulate the theory. The metalogic is
usually implicitly chosen as “standard math as taught in school”, but re-
cent examples have shown that some separation logics become both sim-
pler and more general when embedded in a metalogic that provides, for
example, bound names [Pit01], dependent types [KBJD13] or step-indexing
[SB13a, BMSS12].

1.2 What is a separation logic?

To limit the scope of this text, we impose some minimum requirements on
what is considered a separation logic. We will say it must contain:

1. An logic of assertions P,Q,R that is a complete BI algebra; i.e., it
satisfies the rules in Figure 2 (page 9) and Figure 4 (page 13).

2. A logic of specifications S that is a complete Heyting algebra; i.e.,
it satisfies the rules in Figure 2.

3. A Hoare-triple specification of the form {P} c {Q} or a generalisa-
tion thereof. The Hoare triple must satisfy

P ` P ′ S ` {P ′} c {Q′} Q′ ` Q
Consequence

S ` {P} c {Q}

S ` ∀x. {P (x)} c {Q}
Exists

S ` {∃x. P (x)} c {Q}
S ` {P} c {Q}

Frame
S ` {P ∗R} c {Q ∗R}

These requirements are somewhat imprecise, but they have to be, since
they apply to logics that have yet to be invented.

The inference rules required of the triple ensure that it admits the narra-
tion style of writing a Hoare-logic proof [Rey11, WDP13], where commands
are interleaved with assertions. Figure 1 shows an example proof narration
that uses all three rules.

1.3 Contributions

The main contribution of this chapter is to survey a portion of the first twelve
years of separation-logic literature in a common mathematical framework.
There is too much published literature to mention it all, so the focus is on
techniques that are needed everywhere rather than the very latest develop-
ments in specific areas such as concurrency.

3

{head 6= nil ∧ list(head)} (Consequence)

{∃n. head 7→ n ∗ list(n)} (Exists)

{head 7→ n ∗ list(n)} (Frame)

{head 7→ n}
next := [head];

{head 7→ n ∧ next = n}
{(next = n ∧ head 7→ n) ∗ list(n)} (Consequence)

{head 7→ next ∗ list(next)} (Frame)

{head 7→ next}
free(head);

{emp}
{emp ∗ list(next)} (Consequence)

{list(next)}

Figure 1: Narration-style proof of a two-line example program.

The chapter follows the same structure as most other articles that define
a programming language and build a separation logic for it, but along the
way we discuss alternatives and variations at every point. A particularly
thorough treatment is given to separation algebras, since their theory is
highly scattered across the literature and often stated in a much less general
form than it could be.

Despite its length, this text is far from being self-contained. The reader
is encouraged to follow literature references for more details and discussions
and for fully worked-out examples.

The conclusion is that making a full-featured higher-order separation
logic is not difficult. With the well-known but underused techniques of
shallow embedding and separation algebras, satisfying the axioms of Figures 2
and 4 can be done by satisfying another set of axioms that is simpler and
relates more directly to the memory model of a programming language.

2 Semantics of the programming language

A separation logic is typically formulated in the context of one particular
programming language, and it is left as an exercise to the reader to port it to
other languages. This is rarely a hurdle, but it certainly makes comparisons
more difficult. In those articles that abstract away from the details of the
programming language [COY07, BJSB11, DYBG+13], the added generality

4

is typically considered a central contribution.
The choice of programming language and semantics forms part of the

statement of the soundness theorem, so it should be as uncontroversial as
possible. It is often so uncontroversial that it is not even written out in
full. There are a few choices to make, though, beginning with the style of
semantics:

Operational. Some flavour of operational semantics is typically the pre-
ferred choice. A typical big-step semantics is an inductively-defined
predicate of the form σ, c σ′ that holds when command c from state
σ may terminate successfully in state σ′. A typical small-step seman-
tics is an inductively-defined predicate of the form σ, c σ′, c′ that
holds when command c may take a single step from state σ, leaving
a residual command c′ and a modified state σ′. Both types of opera-
tional semantics often have an additional form σ, c fail that holds
when c from state σ may fail, either eventually (for big-step semantics)
or in one step (for small-step semantics).

The word “may” above refers to non-determinism of the semantics,
which typically arises from memory allocation and concurrency.

Denotational. It is possible to build a separation logic over a denotational
semantics, but this is quite rarely seen. Examples include the work of
Varming and Birkedal [VB08], Brookes’s soundness proof of concurrent
separation logic [Bro07] and Hoare Type Theory [PBNM08].

Axiomatic. An axiomatic semantics can be thought of as a program logic
without a soundness proof, which sounds like a bad thing. But if this
underlying program logic has already been proved sound elsewhere,
then an axiomatic semantics can be an effective shortcut to a simpler
metatheory. It also demonstrates that the underlying program logic is
sufficiently expressive when a high-level program logic can be layered
on top of it.

Examples of axiomatic semantics for separation logics are rare, but we
found it very useful in [JB12], where the soundness of fictional sepa-
ration logic is proved relative to the soundness of standard separation
logic. Another example is [DYGW10], where a high-level program and
its specification are translated to a low-level program and a low-level
specification.

The rest of this section will discuss operational semantics only.
Authors of separation logics are often guilty of defining the programming-

language semantics in ways that are perhaps unnatural for the language but
make it easier to prove the separation-logic metatheory. It is then under-
stood, either formally or informally, that this instrumented semantics is
adequate with respect to a semantics that would be more natural for the

5

language; i.e., any specification proved to hold in the instrumented semantics
also holds in the original semantics.

For instance, it is typical to instrument the semantics so it is well-defined
how commands behave in partial states – i.e., states where any location
might be missing. This might be done even when modelling a machine
where all memory is present all the time [JBK13, Myr10], or where the
type system of the language would ordinarily guarantee that there are no
dangling pointers [Par05, BJSB11]. Commands executed from a too small
partial state should then fail. When this is defined just right, we can prove:

Safety monotonicity. If command c cannot fail in state σ, then it cannot
fail in any extension of σ either.

Frame property. In a big-step semantics, the frame property holds if when-
ever a configuration (σ0, c) cannot fail and (σ0 · σ1), c σ′ then there
exists σ′0 such that σ0, c σ′0 and σ′ = σ′0 · σ1. Here, · is composition
of disjoint states – see Section 3.3.

When these two properties hold, the frame rule follows easily [YO02].
The properties above surprisingly sensitive to language features. Safety

monotonicity will fail if there is a command to query whether some memory
location is mapped [YO02]. The frame property will even fail if the memory
allocator is deterministic [YO02]. It is possible, though, to have the frame
rule without having the frame property – see Section 4.1.1.

2.1 Modelling failure

Failure – i.e., the program crashing – is traditionally a crucial part of sepa-
ration logic. Hoare triples {P} c {Q} are always interpreted to imply that
(σ, c) cannot fail when σ satisfies P ; thus, there must be a possibility of
failure in the semantics, or this property of triples would hold vacuously.
As mentioned above, failure can be modelled with a transition σ, c fail in
the operational semantics, and it typically happens when dereferencing an
invalid pointer.

One must consider whether the semantics permits the distinction be-
tween three important program behaviours: successful termination, fail-
ure and non-termination. One or both of the latter two behaviours might
correspond to the semantics getting stuck; i.e., not allowing further reduc-
tions. We say that a configuration (σ, c) is stuck1 when there is no x, not
even fail, such that σ, c x.

In a big-step semantics, stuckness should correspond to (guaranteed)
non-termination, and therefore we need the fail value to model actual failure
if we want to distinguish the two. But this means that a rule must be added
to trigger and propagate failure in every place it might occur. In the version

1 In a small-step semantics, we might further require c 6= skip.

6

of the Charge! platform described in [BJSB11], there are about as many rules
for failure as there are rules for success, and forgetting to add a failure rule
renders the model of the programming language unsound. This is because it
makes failure look like non-termination, and a partial-correctness program
logic cannot distinguish non-termination from success.

A possible fix for this problem is to not have failure rules but instead a
set of coinductive rules for when a configuration (σ, c) may diverge [LG09].
Then failure is defined as a configuration that is stuck but cannot diverge,
and omission of rules leads to incompleteness instead of unsoundness.

In a small-step semantics, we can often design a system where stuckness
corresponds to failure, avoiding the need for a special fail configuration.
This increases confidence in the semantics and cuts the number of rules
approximately in half for the reasons mentioned above. It works because
stuckness of a subcommand tends to propagate to compound commands:
the sequence command crash; c will be stuck after one step because the crash
command is stuck. Unfortunately, this is sensitive to language features;
in particular, it will not work in a language with a parallel operator: the
command crash || loop forever is never stuck. In such a language, it is
therefore necessary to add an explicit fail configuration [Vaf11], leading to
the same problems as in a big-step semantics.

It is worth mentioning that the Views framework [DYBG+13] quite ele-
gantly avoids explicit propagation of failure through control-flow commands.
It is a small-step semantics, but instead of a failure configuration (replacing
(σ, c)), there is a failure state (replacing σ). See [SB13b] for a generalisation
of the approach that also works for procedure calls and fork-parallelism.

2.2 Modelling concurrency

Separation logic for concurrent languages is an important and active area
of research, and there is certainly room for further exploration. Important
choices to be made in the semantics include the following.

• The basic concurrency primitive can be either a parallel operator
(c1 || c2) or a fork command (fork c or fork f for a function name
f). The fork command is more similar to real-world programming
languages, but the parallel operator is sometimes easier to model. This
is because it is often less expressive – in particular, it is often impossible
to write a program that executes n commands concurrently, where
n is only determined at run time. This becomes possible to do in
continuation-passing style if the language has recursive procedures.

In a language without procedures and where concurrency comes from
the parallel operator, it is possible to syntactically see which threads
are active at which point in the program. This can be used to simplify

7

proofs [GBC11], but that technique does not scale directly to realistic
languages.

• Communication between threads must also be built into the language
at some level. Common solutions include static locks, dynamically-
allocated locks, a compare-and-swap command, and an atomic
command modifier. Some of these primitives can be derived from
each other in a more or less practical way.

• Local (stack) variables can be shared between threads or not. Even
though real-world programming languages rarely share mutable local
variables between threads, this is often allowed in the semantics of toy
languages, and then races must be ruled out at the logic level [O’H07].

Sharing of mutable local variables becomes more complicated if con-
currency comes from a fork command or if they might also be captured
in lambda-expressions [SBP10].

• Most separation logics published so far have been for toy languages
with sequentially-consistent memory, meaning that all threads agree
on the value of shared memory at all times. Actual programming
languages and multi-core hardware have weaker memory models, and
weak-memory separation logics have only recently started to emerge
[FFS10, WB11, VN13].

3 Assertion logic

Assertions are the formulas P,Q occurring in the pre- and postconditions of
Hoare triples {P} c {Q}. They are essentially predicates on machine state,
and the distinguishing feature of separation logic is that they can contain
separating conjunction and related operators. In this section, we will develop
the theory necessary to make all this formal.

3.1 Heyting algebras

The assertion logic must first of all be a logic. I choose to define a logic as
a complete Heyting algebra:

Definition 3.1. A complete Heyting algebra is a type equipped with
operators (>,⊥,∧,∨,∀,∃,⇒) and a binary entailment relation `, satis-
fying the axioms of Figure 2. Read the horizontal lines in the figure as
implication in the metalogic. �

8

`-Refl
P ` P

P ` Q Q ` R
`-Trans

P ` R
P ` Q Q ` P

`-AnSy
P = Q

>-R
P ` > ⊥-L⊥ ` P

P ` Q1 P ` Q2 ∧-R
P ` Q1 ∧Q2

P1 ` Q ∧-L1
P1 ∧ P2 ` Q

P2 ` Q ∧-L2
P1 ∧ P2 ` Q

P1 ` Q P2 ` Q ∨-L
P1 ∨ P2 ` Q

P ` Q1 ∨-R1
P ` Q1 ∨Q2

P ` Q2 ∨-R2
P ` Q1 ∨Q2

P ` Q⇒ R
∧-Adjoint

P ∧Q ` R
P ∧Q ` R

⇒-Adjoint
P ` Q⇒ R

∀x : T. (P ` Q(x))
∀-R

P ` ∀x : T. Q(x)

P (t) ` Q
∀-L∀x : T. P (x) ` Q

∀x : T. (P (x) ` Q)
∃-L∃x : T. P (x) ` Q

P ` Q(t)
∃-R

P ` ∃x : T. Q(x)

Figure 2: Axioms of a complete Heyting algebra.

For convenience, we define the following abbreviations.

` P , > ` P pronounced “P is valid”

P ≡ Q , P = Q but with low precedence, like `
¬P , P ⇒ ⊥

The axioms in Figure 2 are one of many equivalent presentations. Like
a sequent calculus, most rules are presented as left-rules and right-rules for
each operator. However, it is not a standard sequent calculus. Notice the
following details.

• There is a single hypothesis on the left of the turnstile rather than a
comma-separated list of hypotheses. This is the norm in separation
logic because it is otherwise not clear whether the comma would denote
ordinary conjunction or separating conjunction. For an alternative
that is more suitable for proof theory, see [OP99].

• The rules for implication (∧-Adjoint and⇒-Adjoint) do not follow
the pattern of left-rules and right-rules. They are instead presented
as an adjunction, or Galois connection: for any P , the functor
− ∧ P is the left adjoint of P ⇒ −. This presentation simplifies the
proof system when there is only one hypothesis on the left of the

9

turnstile. It also highlights the fact, coming from the general theory
of adjunctions, that the implication operator is uniquely determined
by the conjunction operator and vice versa.

• The rules in Figure 2 are written out quite verbosely such that they
look like a logic and can be practically applied as such. A more com-
mon definition of complete Heyting algebra would characterise entail-
ment ` as a partial order with least upper bounds (⊥,∨, ∃), greatest
lower bounds (>,∧,∀) and an exponential (⇒).

Most logics in the separation-logic literature are less general than a com-
plete Heyting algebra, either because they are missing some operators or
because the domain of quantification is restricted. However, there is rarely
a reason for this lack of generality, other than a perceived gain in simplicity.
We will see in Section 3.3 how to define an assertion logic such that it is a
complete Heyting algebra by construction.

3.1.1 Shallow embedding

Definition 3.1 does not go through the traditional indirection of defining a
syntax for formulas and a denotation function from syntactic formulas to
semantic assertions. We have only the semantic assertions, and operators
such as ∧ are merely infix functions on those.

This approach is sometimes known in the literature as a shallow em-
bedding [WN04], “working directly in the semantics” or “the extensional
approach” [Nip02]. It is used by the majority of separation-logic formalisa-
tions inside proof assistants [AB07, TKN07, CSV07, VB08, McC09, Myr10,
BJSB11, JBK13, AM13] since it eliminates a lot of tedious work – the kind
of work that tends to be dismissed as “routine” in informal mathematics
but cannot be ignored when every detail has to be machine-checked. In
particular, a shallow embedding eliminates the need for contexts of logical
variables and their types, accounts of free logical variables, or capture-
avoiding substitutions and notions of fresh names. It does not save us from
proving tedious results about program variables, though; see Section 3.4.

The quantifiers in Figure 2 are annotated with a domain T , which we
sometimes omit when it is clear from the context. Because we have a shallow
embedding, T ranges over the types of the metalogic, and the formula under
the quantifier is a metalogic function from T to assertions. Notice that
the universal quantifiers in the premise of rules ∀-R and ∃-L belong to the
metalogic rather than the complete Heyting algebra. Notice also that it is
possible for T itself to be the type of assertions, which means that we have
defined a higher-order logic.

The opposite of shallow embedding is a deep embedding, where for-
mulas and inference rules are syntactic objects that can be manipulated
independently of their semantic models, of which there can be many. A

10

common motivation for deep embeddings is to study the rules of the logic
independently from its models. But notice that we can still do this since
Definition 3.1 characterises complete Heyting algebras in the abstract, sep-
arately from describing any particular such algebra. Shallow embedding is
not a new way to study logic, but it is rarely used with separation logic out-
side proof assistants. Compare this with other mathematical fields, where it
is standard, for example, to study group theory independently of particular
groups, and nobody would propose to use syntactic formulas for this.

With all this said, it is justifiable to use a deep embedding when the
desire is to limit expressiveness of the logic deliberately [Nip02]. This can
be used for stating decidability or completeness results or when documenting
a software tool that manipulates this logic and thus needs to represent it
symbolically.

3.1.2 Injecting metalogic propositions

The quantifiers in a shallow embedding allow us to mention data of arbitrary
type in formulas. For this to be useful, we also need to inject propositions
from the metalogic that describe this data. In particular, we will need an
injection 〈p〉 of metalogic propositions p into assertions.

The alternative to such an injection would be to recreate the necessary
mathematical theories inside the assertion logic; i.e., equality, induction,
recursion, etc. While this is certainly possible, it could end up being more
work than the separation logic itself.

Fortunately, we can define a 〈p〉 for any Heyting algebra by exploiting
the existential quantifier and metalogic subtyping2:

〈p〉 , ∃x : {x : unit | p}. >

The injection is covariant with respect to entailment, and it satisfies
practical left- and right-rules:

p⇒ q 〈〉-`
〈p〉 ` 〈q〉

p⇒ (` Q)
〈〉-L

〈p〉 ` Q
q 〈〉-R

P ` 〈q〉

We now have the theory of equality in our complete Heyting algebra for
free, simply by lifting it from the metalogic. For instance, we can prove

P (x) ∧ 〈x = y〉 ` P (y)

The corresponding entailment in a deep embedding would be written as
P ∧ x = y ` P [y/x]. The deep-embedding concepts of free variables and
substitutions are modelled here with function application.

2 The exact definition will vary depending on the metalogic. The unit type can be
replaced with any other non-empty type. In Coq, we can simply write 〈p〉 , ∃x : p. >.

11

> , T P ∧Q , P ∩Q ∀x : T. P (x) ,
⋂
x:T

P (x)

⊥ , ∅ P ∨Q , P ∪Q ∃x : T. P (x) ,
⋃
x:T

P (x)

P ` Q , P ⊆ Q P ⇒ Q , {t | ∀t′ ≥ t. t′ ∈ P ⇒ t′ ∈ Q}

Figure 3: Kripke definition of a complete Heyting algebra when assertions
are subsets of T , upwards closed under a preorder ≤.

3.1.3 Kripke models

Complete Heyting algebras are convenient because they correspond to a
familiar notion of logic. They are also convenient because they are easy to
construct from a type T and a preorder on T ; i.e., a binary relation that
is reflexive and transitive:

Proposition 3.1. Given a preordered type (T,≤), the powerset P≤(T) is a
complete Heyting algebra, where

P≤(T) , {P : P(T) | ∀t ∈ P. ∀t′ ≥ t. t′ ∈ P}

and the operators of P≤(T) are defined as in Figure 3.

The definitions in Figure 3 are known as a Kripke model; the inter-
esting part of it is the definition of implication, which explicitly ensures
closure under ≤, whereas that closure holds directly for all other operators.
The injection from the metalogic to the assertion logic that was discussed
in Section 3.1.2 can be defined as 〈p〉 = {t | p}.

More generally, we can construct a Heyting algebra from an existing one
as follows.

Proposition 3.2. Given a complete Heyting algebra A and a preordered
type (T,≤), the space of monotonic functions T →≤ A is also a complete
Heyting algebra, where

T →≤ A , {f : T → A | ∀t, t′. t ≤ t′ ⇒ (f(t) ` f(t′))}

and the operators of T →≤ A are defined in terms of the operators on A:

P ⊕Q , λt. P (t)⊕Q(t) for ⊕ ∈ {∧,∨}
P , λt. P for P ∈ {>,⊥}

κx.P (x) , λt. κx.P (x)(t) for κ ∈ {∀, ∃}
P ⇒ Q , λt. ∀t′ ≥ t. P (t′)⇒ Q(t′)

P ` Q , ∀t. (P (t) ` Q(t))

12

∗-Assoc
(P ∗Q) ∗R ` P ∗ (Q ∗R)

∗-Comm
P ∗Q ` Q ∗ P

∗-emp
P ∗ emp ≡ P

P ` Q
∗-`

P ∗R ` Q ∗R

P ` Q −∗ R
∗-Adjoint

P ∗Q ` R
P ∗Q ` R

−∗-Adjoint
P ` Q −∗ R

Figure 4: Additional axioms of a BI algebra

Proof. See [BJ], Lemma ILPre ILogic. �

We will use these constructions to define specification logics, and we will
use generalised forms of them to define assertion logics.

Note that the law of the excluded middle, i.e. ` P∨¬P for all P , does
not follow from the axioms of a complete Heyting algebra, and it is invalid
in the models constructed here unless the preorder is also symmetric; i.e.,
an equivalence relation.

3.2 BI algebras

Defining complete Heyting algebras only got us half way to separation-logic
assertions. We still need an account of the operators that make separation
logic special: separating conjunction (∗), separating implication (−∗), and
emp. Note that emp is sometimes written I in the literature.

Definition 3.2. A complete BI algebra [Pym02] is a complete Heyting
algebra with additional operators (∗,−∗, emp) satisfying the axioms in Fig-
ure 4. The precedence of operators used in this text will be, in decreasing
order:

= ∗ ∧ ∨ −∗ ⇒ ∀ ∃ ` ≡ �

The axioms in Figure 4 are intentionally minimal. Rules for associativity
and commutativity with ≡ instead of ` are derivable. It can also be derived
that ∗ is covariant in both arguments; i.e.,

P ` P ′ Q ` Q′

P ∗Q ` P ′ ∗Q′

When I required in Section 1.2 that the assertion logic must be a com-
plete BI algebra, it was not only because this gives us the rules that make
separation logic intuitive to work with. It is also because it is easy to satisfy
these rules. We will see in Section 3.3 how a complete BI algebra arises

13

naturally from the memory model of a typical programming language or
machine.

The operators −∗ and ⇒ are often omitted from presentations when
they are not needed for the examples at hand. But even then, they play
an important role in metatheory: they witness that ∗ and ∧ commute with
existential quantification as explained in the following proposition.

Proposition 3.3. In a complete Heyting algebra with an operator ∗ satis-
fying rule ∗-`, it holds that (∃x: T. P (x)) ∗Q ` ∃x: T. P (x) ∗Q if and only
if there is an operator −∗ satisfying the rules ∗-Adjoint and −∗-Adjoint.

This proposition is a direct consequence of the adjoint functor theorem in
category theory, but it is worth seeing the proof written out for the specific
case of separation logic. Notice that the left-to-right direction, which is
probably the surprising one, is only provable because the assertion logic is
higher order, and we can quantify over a type T that represents a set of
assertions.

Proof. (⇐) By the following proof tree.

`-Refl∀x. (Q(x) ∗ P ` Q(x) ∗ P)
∃-R∀x. (Q(x) ∗ P ` ∃x. Q(x) ∗ P)
−∗-Adjoint∀x. (Q(x) ` P −∗ ∃x. Q(x) ∗ P)
∃-L∃x. Q(x) ` P −∗ ∃x. Q(x) ∗ P
∗-Adjoint

(∃x. Q(x)) ∗ P ` ∃x. Q(x) ∗ P

(⇒) Define Q −∗ R as ∃P ′ : {P ′ | P ′ ∗ Q ` R}. P ′. We first prove
−∗-Adjoint, which holds without appealing to the assumption we made:

`-Refl
P ` P

P ∗Q ` R
(metalogic)

P : {P ′ | P ′ ∗Q ` R}
∃-R with P

P ` ∃P ′ : {P ′ | P ′ ∗Q ` R}. P ′
Def.

P ` Q −∗ R

To prove ∗-Adjoint, we appeal to our assumption under the name ∗-∃.

P ` Q −∗ R
∗-`

P ∗Q ` (Q −∗ R) ∗Q

∀P ′. (P ′ ∗Q ` R)⇒ (P ′ ∗Q ` R)
(metalogic)

∀P ′ : {P ′ | P ′ ∗Q ` R}. (P ′ ∗Q ` R)
∃-L∃P ′ : {P ′ | P ′ ∗Q ` R}. P ′ ∗Q ` R
∗-∃

(∃P ′ : {P ′ | P ′ ∗Q ` R}. P ′) ∗Q ` R
Def.

(Q −∗ R) ∗Q ` R
`-Trans

P ∗Q ` R
�

By analogy with Proposition 3.3, we can also show that the ⇒-operator
exists if and only if the ∧-operator commutes with existentials.

14

3.2.1 Classical and intuitionistic logics

There is an important special case of BI that is relevant for separation
logic: Boolean BI (BBI). BBI is obtained by adding the law of the
excluded middle (` P ∨ ¬P for all P) to the axioms of Figure 2, which
makes Figure 2 describe a complete Boolean algebra – a special case of
a complete Heyting algebra. Adding the axioms of Figure 4 as well, one
obtains a complete BBI algebra.

Another important dialect is affine BI [GMP05]. This is obtained by
adding weakening of ∗ to BI, meaning that P ∗ Q ` P , or equivalently,
emp ≡ >. It is the preferred way to define a separation logic for a garbage-
collected language, where it lets us “logically forget” the resource Q with
the expectation that it will be garbage-collected some time after (or even
before! [Rey00, HDV11]) logically forgetting it.

In the separation-logic literature [IO01], BBI is typically known as clas-
sical separation logic, and affine BI is known as intuitionistic separa-
tion logic. This is unlike the more established terminology from philosoph-
ical logic, where propositions that are provable in intuitionistic logic are also
expected to be provable in classical logic. To add to the confusion, there
also exists classical BI [BC10], which is something else entirely. To avoid
these clashes of terminology, I will prefer the terms Boolean and affine over
classical and intuitionistic in the remainder of this chapter.

A BI algebra that is both Boolean and affine collapses in the sense that
P ∗Q ≡ P ∧Q [BK10]. On the other hand, as we will see in Section 3.3.4,
there exist useful separation logics that are neither Boolean nor affine.

3.2.2 Design freedom

It might seem like there is a great deal of freedom when designing a logic
that satisfies the axioms in Figures 2 and 4, but many operators are uniquely
determined by others. In fact, all operators of a complete BI algebra are
uniquely determined when ` and ∗ are chosen.

The left- and right-rules of Figure 2 uniquely identify the operators
(∀, ∃,∧,∨,>,⊥). For example, if another operator ∧∧ satisfies the axioms
for ∧ in Figure 2, it follows that P ∧∧Q ≡ P ∧Q for all P and Q.

It follows from Figure 4 that (∗, emp) is a monoid, so its unit emp is
unique. This means that once the operator ∗ is defined, there is no freedom
left to choose the operator emp.

Similarly, the proof rules for −∗ and ⇒ essentially say that (P −∗ −) is
the right adjoint of (−∗P) and that (P ⇒ −) is the right adjoint of (−∧P).
Since adjoints are unique, there is no freedom in choosing the operators
(−∗,⇒) once (∗,∧) have been defined. In fact, we can define −∗ and ⇒ in
terms of other operators:

Proposition 3.4. In a complete BI algebra asn, for all Q,R : asn,

15

1. Q −∗ R ≡ ∃P : {P | P ∗Q ` R}. P

2. Q⇒ R ≡ ∃P : {P | P ∧Q ` R}. P

Proof (of 1.). Define Q −∗∃ R , ∃P : {P | P ∗ Q ` R}. P . The proof of
Proposition 3.3 shows that −∗∃ follows the same two axioms as −∗. It follows
that (P −∗∃ Q ` P −∗ Q) if ((P −∗∃ Q) ∗ P ` Q) if (P −∗∃ Q ` P −∗∃ Q) if
true. The converse is similar, which gives the necessary bientailment. �

We can also define (∧,>) and (∨,⊥) in terms of ∀ and ∃ respectively:

Proposition 3.5.

1. Assume P,Q : asn, where asn is a complete Heyting algebra. Let
f2 : {true, false} → asn be the function that maps true to P and false
to Q. Then

P ∨Q ≡ ∃b. f2(b)
P ∧Q ≡ ∀b. f2(b)

2. Let f0 : ∅ → asn be the unique function with that type. Then, in a
complete Heyting algebra,

⊥ ≡ ∃x. f0(x)

> ≡ ∀x. f0(x)

Proof. See the Coq code accompanying [JBK13], Section ILogicEquiv. �

3.3 Separation algebras

3.3.1 Heaps

For a typical toy programming language, the type of heaps is defined as
heap = loc fin⇀ val , where loc is the type of heap locations (e.g., the natural
numbers), val is the type of values that can be stored in the heap (e.g.,
integers and locations), and fin⇀ is the space of partial functions with finite
domain. It is convenient to let loc be an infinite set and let all heaps have
finite domain because this guarantees that allocations can always succeed –
there are always infinitely many free locations in the heap.

The standard way to build a complete BI algebra from this type is to
define a composition operation: (·) : heap×heap ⇀ heap. The composition
h1 · h2 is defined when the domains of h1 and h2 are disjoint, in which case
it takes the union of the two partial functions; i.e.,

(h1 · h2)(l) =

h1(l) if l ∈ dom(h1) \ dom(h2)

h2(l) if l ∈ dom(h2) \ dom(h1)

undefined otherwise

16

The assertion logic can then be defined as asn = P(heap), which is a
complete BBI algebra with the following operators.

∃x : T. P (x) =
⋃
x:T

P (x) (1)

∀x : T. P (x) =
⋂
x:T

P (x) (2)

P ∗Q = {h1 · h2 | h1 ∈ P ∧ h2 ∈ Q} (3)

To make this useful, we define a points-to operator as l 7→ v = {[l 7→ v]},
where [l 7→ v] is the singleton map that only maps l to v.

Although we could in principle reason directly about heaps and their
composition [NVB10], it is typically considered easier to work in terms of the
total operator ∗ than the partial operator ·. The ∗ operator also generalises
better than ·, as we will see in Section 3.3.4.

Affine assertion logic. The assertion logic defined in Equations (1–3) is
Boolean in the sense described in Section 3.2.1. More generally, for any set
X, its powerset P(X) is a complete Boolean algebra with the quantifiers
defined as in (1) and (2). To build an affine logic instead of a Boolean one,
we define assertions to be closed under the extension ordering of heaps,
defined as h v h′ when h′ has all the same mappings as h (and possibly
more).

h v h′ , ∃h0. h′ = h · h0
asn = Pv(heap)

With the same definitions of (∃, ∀, ∗) as in Equations (1–3), this forms a
complete affine BI algebra [IO01].

3.3.2 Motivations for generalisation

Other programming languages might define heap differently. For example,
an object-oriented language [BJSB11] might have heap = loc × field fin⇀ val ,
where field is the set of field names; i.e., strings. A machine language for a
32-bit machine [JBK13] might have heap = [0..232) fin⇀ [0..28).

Furthermore, memory models are often instrumented, either at the
level of operational semantics or at the logical level. An important exam-
ple of such instrumentation is fractional permissions [BCOP05, Boy03],
where a heap cell contains not only a value but also a rational number in
perm = {q : Q | 0 < q ≤ 1}, where permission 1 is a read-write permis-
sion, and any smaller number is a read-only permission. Then we write
heap = loc fin⇀ val ×perm and let heap composition (·) be defined even when
there is overlap in the heap domains as long as the overlapping locations
agree on values, and their permissions sum up to at most 1.

17

Very elaborately-instrumented heaps can be found in the work on con-
current abstract predicates [DYDG+10, SBP13, SB13a]. These “heaps”
can contain fractions, named regions, relations on (simpler) heaps, state
machines, step-indexes [AM01] and ghost state.

There is thus clearly a need to construct complete BI algebras from the
powersets of very elaborate structures. The good news is that there is a
theory for doing exactly that in two steps: first, prove that the structure in
question is a separation algebra. Then invoke a theorem that says that
the powerset of any separation algebra, possibly closed under a suitable
preorder, is a complete BI algebra. Proving that something is a separation
algebra is often a very syntax-directed activity, so this approach greatly
reduces the amount of work to be carried out when building an assertion
logic.

We will first look at how to build a complete BI algebra from a separation
algebra, and then we will look at how to build a separation algebra.

3.3.3 Definitions of separation algebra

The claim from Section 3.3.1 that the powerset of loc fin⇀ val is a complete
BI algebra can be proved entirely based on the abstract properties of the
composition operator (·): it forms a partial commutative monoid. Being
a monoid means that composition is associative, which lifts to powersets and
lets us prove associativity of the ∗ operator as we defined it in Equation (3).
It also means that there is a unit element 0, and we can define emp = {0}
and prove that it is the unit of ∗. Commutativity lifts to powersets as well.
The remaining rules in Figure 4 follow from (3) without appealing to the
monoid properties.

The term separation algebra is used in the literature to describe struc-
tures of this kind. Unfortunately, there is little agreement on what a separa-
tion algebra is precisely. Some authors [JB12, GBC11] define it as a partial
commutative monoid (Σ, ·, 0) with a carrier set Σ, a partial binary operation
(·) and a unit 0 for that operation, but the following variations, and more,
exist.

• The original definition [COY07] required cancellativity, meaning
that if a1 · a and a2 · a are defined and equal, then a1 = a2. This prop-
erty is not important for constructing a complete BI algebra, but it can
be important for validating the conjunction rule, which says that
{P} c {Q1} and {P} c {Q2} implies {P} c {Q1 ∧Q2} [JB11, GBC11].
It is still common for definitions of separation algebras to include can-
cellativity [Tue09, DHA09, BJSB11, BK10], but it is less common that
they make active use of that axiom.

• Newer definitions [DHA09, BK10, DYBG+13] allow multiple units,
where the intuition is that every element is associated with exactly one

18

unit, but there does not have to be one unit that is compatible with
every element. This effectively partitions the separation algebra into
equivalence classes; one for each unit. This situation arises naturally
when taking the disjoint union of two single-unit separation algebras
– then there will be two units [DHA09].

• Pottier [Pot13] does not require there to be units but instead requires
that there is a core for every element. Ordering elements by the
extension order, the core of a is meant to be the largest duplicable
element less than a, where an element is duplicable if it composes
with itself to yield itself. This definition does not generalise partial
commutative monoids; it is something different.

• Working with a partial monoid can be awkward. Asserting definedness
of composition can be overly verbose when done explicitly [NVB10]
and potentially ambiguous when done implicitly [JB12]. Some authors
have addressed this by requiring a total (i.e., ordinary) commutative
monoid and adding an absorbing element to represent undefinedness,
either always [GMP05] or when necessary [KTDG12].

• Other authors have gone in the opposite direction [GMP05, GLW06,
Pot13] and generalised the composition to have type Σ ×Σ → P(Σ).
This is called a non-deterministic monoid or, in the equivalent
presentation of a composition with type P(Σ ×Σ ×Σ), a relational
monoid.

• Dockins et al. [DHA09] proposed several more axioms that limit the
class of separation algebras to those that resemble heaps in various
senses.

In very recent work, Brotherston and Villard [BV13] propose a definition
that generalises all of the above, except possibly Pottier’s “core” concept:

Definition 3.3. A separation algebra is a triple (Σ, ·, U) where (·) : Σ×
Σ → P(Σ) and U ⊆ Σ, and the following holds

1. Commutativity: a ∈ a1 · a2 ⇒ a ∈ a2 · a1

2. Assoc.: a12 ∈ a1 · a2 ∧ a123 ∈ a12 · a3 ⇒ ∃a23 ∈ a2 · a3. a123 ∈ a1 · a23

3. Existence of unit: ∀a. ∃u ∈ U. a ∈ u · a

4. Minimality of unit: u ∈ U ∧ a′ ∈ u · a⇒ a = a′ �

This definition is identical to the one in the Views framework [DYBG+13]
except that composition here is non-deterministic rather than partial. We
will use this definition in the rest of this section and show several ways to
construct a complete BI algebra from it.

19

The four axioms of Definition 3.3 may not look like a natural or obvious
definition, but consider a lifting of · to sets A ⊆ Σ:

A1 ·A2 , {a | ∃a1 ∈ A1. ∃a2 ∈ A2. a ∈ a1 · a2}

The axioms of Definition 3.3 are then equivalent to this lifted · being com-
mutative and associative with unit U .

3.3.4 Upwards-closed assertions

All assertion logics I have encountered in the literature are essentially mod-
elled as the powerset of some separation algebra Σ, upwards closed under
some preorder ≤. That is, assertions are of type

P≤(Σ) , {P : P(Σ) | ∀a ∈ P. ∀a′ ≥ a. a′ ∈ P}

The Heyting part of the logic is then a standard Kripke semantics as defined
in Figure 3 (page 12).

Typical choices of the preorder are

• Equality (=), in which case P≤ = P(Σ), and the law of the excluded
middle holds in the logic.

• Some other equivalence relation (≡), in which case the law of the
excluded middle also holds.

• The extension ordering on the separation algebra (v). We encoun-
tered the extension ordering for heaps in Section 3.3.1, and it can be
generalised to arbitrary separation algebras as

a v a′ , ∃a0. a′ ∈ a · a0

As we will see below, this leads to an affine assertion logic.

• An interference relation [DYDG+10, DYBG+13] that describes how
other threads may modify the state described by assertions. This
enables local reasoning in a concurrent setting, at the cost of precision
of the assertions.

As a simple example [SBP13], a memory location could be tagged as
containing a monotonic counter, which can be increased or read
by any thread at any time. The interference relation is then chosen
to allow for such counters to go up but not down, which means that
assertions can only express that the counter has at least value n but
not exactly value n.

Another example is to let ≤ model the actions of a garbage collector,
such as deallocating and moving objects in memory [HDV11]. Asser-
tions closed under such a relation would be guaranteed immune to
garbage collection.

20

While the Heyting part of P≤(Σ) is always as in Figure 3, there are
at least two different ways to obtain the BI part, depending on how the
separation algebra interacts with the preorder. The first is adapted from
[DYBG+13]:

Proposition 3.6. If (Σ, ·, U) is a separation algebra and ≤ is a preorder
on Σ satisfying the following two conditions

1. The unit set is closed under the preorder; i.e., ∀u ∈ U. ∀a ≥ u. a ∈ U .

2. ∀a1, a2. ∀a ∈ a1 · a2. ∀a′ ≥ a. ∃a′1 ≥ a1. ∃a′2 ≥ a2. a
′ ∈ a′1 · a′2;

intuitively, the operands of · can be transported upwards along ≤ to
follow the result.

then a complete BI algebra is formed by P≤(Σ) with the operators defined
as in Figure 3 and

emp = U

P ∗Q = {a | ∃a1 ∈ P. ∃a2 ∈ Q. a ∈ a1 · a2}
P −∗ Q = {a2 | ∀a′2 ≥ a2. ∀a1 ∈ P. a1 · a′2 ⊆ Q}

Proof. See [BJ], Section BIViews. That proof is actually of a slightly more
general fact, analogous to how Proposition 3.2 generalises Proposition 3.1.�

If the conditions for Proposition 3.6 are not satisfied3, then the following
proposition might apply instead. It is adapted from [GMP02, POY04] and
generalised from its original setting of partial commutative monoids to our
setting of more general separation algebras.

Proposition 3.7. If (Σ, ·, U) is a separation algebra and ≤ is a preorder
on Σ satisfying the following condition

1. ∀a′1, a′2. ∀a′ ∈ a′1 · a′2. ∀a1 ≤ a′1. ∀a2 ≤ a′2. ∃a ≤ a′. a ∈ a1 · a2;
intuitively, the result of · can be transported downwards along ≤ to
follow the operands.

then a complete BI algebra is formed by P≤(Σ) with the operators defined
as in Figure 3 and

emp = {a′ | ∃u ∈ U. u ≤ a′}
P ∗Q = {a′ | ∃a1 ∈ P. ∃a2 ∈ Q. ∃a ∈ a1 · a2. a ≤ a′}
P −∗ Q = {a2 | ∀a1 ∈ P. a1 · a2 ⊆ Q}

Proof. See [BJ], Section BISepRel. �

3 for instance, the extension ordering does not satisfy the first condition

21

The conditions of neither Proposition 3.6 nor Proposition 3.7 generalise
the conditions of the other, so perhaps a unifying theorem is still waiting
to be discovered. Notice that Proposition 3.6 gives a simple and standard
definition of ∗ but a more involved definition of −∗, while in Proposition 3.7
it is the other way around.

Proposition 3.7 has the following corollaries for special cases of ≤.

Corollary 3.1. If (Σ, ·, U) is a separation algebra, then a complete Boolean
BI algebra is formed by P(Σ) with the operators defined as in Figure 3 and

emp ≡ U
P ∗Q ≡ {a | ∃a1 ∈ P. ∃a2 ∈ Q. a ∈ a1 · a2}
P −∗ Q ≡ {a2 | ∀a1 ∈ P. ∀a ∈ a1 · a2. a ∈ Q}
P ⇒ Q ≡ {a | a ∈ P ⇒ a ∈ Q}

Corollary 3.2. If (Σ, ·, U) is a separation algebra with extension ordering
v, then a complete affine BI algebra is formed by Pv(Σ) with the operators
defined as in Figure 3 and

emp ≡ >
P ∗Q ≡ {a | ∃a1 ∈ P. ∃a2 ∈ Q. a ∈ a1 · a2}
P −∗ Q ≡ {a2 | ∀a1 ∈ P. ∀a ∈ a1 · a2. a ∈ Q}

In logics modelled over P≤(Σ), primitive assertions such as points-to can
typically be defined in terms of the injection ·� : Σ → P≤(Σ), defined as
a� , {a′ | a′ ≥ a}. In words, a� is the smallest set in P≤(Σ) that includes
a.

3.3.5 Constructions

In recent work on separation logic and related formalisms [JB12, KTDG12,
LWN13, DYGW10], each module of the program can have its own sepa-
ration algebra, so the task of verifying a module includes coming up with
a separation algebra suitable for it and checking the conditions in Defini-
tion 3.3. While this is already much simpler than proving that something is
a complete BI algebra, we can make it even simpler still, because separation
algebras are very compositional. The following proposition is adapted from
[DHA09] and [JB12].

Proposition 3.8. Given separation algebras (Σ1, ·1, U1) and (Σ2, ·2, U2) and
an arbitrary type T ,

1. The product Σ1 × Σ2 is also a separation algebra with unit U1 × U2

and composition (a1, a2) · (b1, b2) , (a1 ·1 b1)× (a2 ·2 b2).

22

2. The tagged union Σ1 + Σ2 , ({1} × Σ1) ∪ ({2} × Σ2) is also a
separation algebra with unit U1 + U2 and composition as the smallest
relation satisfying (i, a) · (i, b) = {i} × (a ·i b) for i ∈ {1, 2}.

3. The set T can be viewed as a discrete separation algebra T discr if
we define the units as U , T and composition as the smallest relation
satisfying t · t = {t}.

4. The space T fin→ Σ1 of finitely-supported functions is a separation
algebra. Being finitely supported means that only a finite number of
values from the domain are mapped to non-unit values. The units are
the functions mapping everything to some unit, and composition is
pointwise:

U , {f | ∀t. f(t) ∈ U1}
f · g , {h | ∀t. h(t) ∈ f(t) ·1 g(t)}

Proof. See [BJ] for items 1,2,4. See [DHA09] for item 3. �

The space of finitely-supported functions (fin→) has good composition
properties. In particular, it allows currying, so the set (A × B) fin→ Σ is
isomorphic to the set A fin→ (B fin→ Σ). This is in contrast to the space of
finite partial functions (fin⇀), which does not have this isomorphism [Par05]
since the curried form allows distinguishing between the values [] (the empty
map) and [a 7→ []] (a singleton map that maps a to the empty map). We
found that proofs of deallocation in fictional separation logic [JB12, JB11]
became much simpler when using (fin→) instead of (fin⇀).

We will in practice need more constructions than those given in Propo-
sition 3.8. In fictional separation logic [JB12], we found it useful to revive
the concept of a permission algebra [COY07], which is like a separation
algebra but without units:

Definition 3.4. A permission algebra is a pair (Π, ·) where (·) : Π×Π →
P(Π), and the following holds

1. Commutativity: a ∈ a1 · a2 ⇒ a ∈ a2 · a1

2. Assoc.: a12 ∈ a1 · a2 ∧ a123 ∈ a12 · a3 ⇒ ∃a23 ∈ a2 · a3. a123 ∈ a1 · a23 �

A similar but more restrictive definition is given in [Hob11] and used for
the same purpose: to serve as an intermediate structure when composing a
separation algebra.

Proposition 3.9.

1. Permission algebras form products and tagged unions just like separa-
tion algebras do.

23

2. A permission algebra Π together with a fresh unit element 0 can be
viewed as a separation algebra (Π)0 , Π ∪ {0} with units {0} and
composition defined as in Π for non-unit elements and as 0 · a =
a · 0 = {a} in other cases.

3. Any set T can be viewed as an equality permission algebra T= if
we define composition as the smallest relation satisfying t · t = {t}.

4. Any set T can be viewed as an empty permission algebra T∅ if we
define composition as t · t′ = ∅.

With these constructions, we can now redefine the heaps from Sec-
tion 3.3.1 as heap , loc fin→ (val∅)0. We have described the same separation
algebra (heap, ·, []) as before, but this time there is nothing further to define
or prove. The composition operation and its properties follow syntactically
from Propositions 3.8 and 3.9, and the fact that P(heap) forms a complete
BBI algebra follows from Corollary 3.1.

We can also define heaps with permissions [BCOP05, Hob11] for any
permission algebra Π as heapΠ , loc fin→ (val=×Π)0. For further examples,
see [JB12, JB11].

As already mentioned, the study of separation algebras is still at an
early stage, and the constructions presented here could soon be superseded
by better ones. Not all definitions of separation algebra support all the
constructions; in particular, multiple units are needed to support tagged
unions and discrete separation algebras [DHA09]. For most of the alternative
definitions of separation algebras discussed in Section 3.3.3, none of the
constructions have been verified. One exception is [DHA09], which proposes
several specialisations of separation algebras and verifies that each one is
preserved by all constructions.

3.3.6 Cyclic definitions

Advanced separation logics often feature instrumented heaps that can “store”
assertions. Examples of such stored assertions include the invariant asso-
ciated with a storable lock [GBC+07], the operations allowed on a shared
resource [DYDG+10], or the precondition of a procedure stored in memory
[NS06].

A representative example of this situation, inspired by models of storable
locks, could be the following attempt to define heaps:

Σ = loc fin→ ((val × asn)∅)0

If asn = P≤(Σ) as usual, then this definition becomes cyclic, with Σ in a
negative position:

Σ = loc fin→ ((val × P≤(Σ))∅)0

24

There is no set-theoretic solution to this equation, so it cannot be used as a
definition.

A comprehensive treatment of the techniques that apply here is beyond
the scope of this text, but the solutions can roughly be grouped into three
types, ordered here by increasing expressiveness of the resulting logic.

1. Store a syntactic assertion [VN13, DYDG+10] or token [GBC+07] in-
stead of a semantic assertion. This can work well enough for first-order
theories.

2. Use step-indexing or similar techniques [AMRV07, DHA09, BRS+11]
to guard the recursive occurrence. This essentially creates an approx-
imation of the recursively-defined heap up to n+1 recursive iterations,
exploiting that a program that has only n steps of execution left will
not have time to observe what lies beyond that depth in the heap when
a heap dereference takes one step. Specification validity then means
that the program is valid for arbitrary values of this n.

3. The separation logic can be developed in a metalogic that does not re-
strict recursive occurrences to being strictly positive in the traditional
sense. The topos of trees [BMSS12] has recently been proposed for
this purpose; it allows negative occurrences as long as they are guarded
by a modal operator .. In the model of the topos of trees, this modal
operator is explained in terms of step-indexing, so this technique is
sound for essentially the same reason as item 2 above.

See [SB13a] for a recent example of using the topos of trees as the
metalogic of an impredicative concurrent separation logic.

Step-indexing in logical propositions, rather than types, are discussed in
Section 4.2.2.

3.4 Program variables

We have so far discussed assertions quite abstractly, but ultimately they are
of course used in pre-and postconditions of commands, and they must be
able to describe the values of program variables as named in the source
program. The exact technique will necessarily be specific to the program-
ming language, but there are some common patterns and even some reusable
theory just like there was for heaps.

Using a shallow embedding gave us typed logical variables practically
for free, but there is no such shortcut for program variables. Fortunately,
program variables still tend to be simpler to support than logical variables
since program variables tend to have a more restricted binding structure.

When every formal detail has to be right – especially when working in
a proof assistant – then there are many pitfalls in the encoding of program

25

variables. This section surveys the techniques that have been proposed for
handling program variables in various programming languages. The goal is
to make program variables behave much like logical variables, which is the
tradition in Hoare logic, while still retaining all the benefits of a shallow
embedding.

The semantics of a programming language tends to divide the state into
a heap and a stack (i.e., stack frame). Shared mutable data lives on the
heap, while the content of local variables lives on the stack. Some authors
use the term store instead of stack. Stacks in While-like toy programming
languages are typically modelled as stack , var → val . This also suffices for
modelling many realistic languages such as Java [PB05, BJSB11] or assembly
[CSV07, Myr10, JBK13], where the type var is chosen as strings or register
names respectively.

Other languages have more complex stacks, where a simple mapping
from variables to values does not suffice. This tends to happen when the
language enables access to the L-value of local variables, either with an ex-
plicit address-of operation as in the C programming language, or implicitly
through variable capture [SBP10]. Complications may also arise in concur-
rent languages, where the stack becomes shared when threads fork. Variable
scoping rules in JavaScript is a whole research topic in itself [GMS12].

The rest of this section assumes that (instrumented) machine states can
be modelled as stack × heap for some definition of heap. Even separation
logics for the C programming language adopt this model and simply disallow
access to the address of local variables [AB07, TKN07, JSP12, AM13].

Using the constructions from Section 3.3.5, there are at least two useful
ways to turn the whole machine state into a separation algebra.

1. If we let stack be a discrete separation algebra, then the product
stackdiscr × heap is a separation algebra whose composition is defined
by

(s, h) ∈ (s1, h1) · (s2, h2) ⇐⇒ s = s1 = s2 ∧ h ∈ h1 · h2
With a standard construction to form a complete BI algebra from
stackdiscr × heap, such as Corollary 3.1, we obtain the same definition
of ∗ as in the vast majority of separation-logic texts:

P ∗Q ≡ {(s, h) | ∃h1, h2. h ∈ h1 · h2 ∧ (s, h1) ∈ P ∧ (s, h2) ∈ Q}

A drawback of this approach is that it typically requires a syntactic
side condition on the frame rule to say that variables free in the frame
R must not be modified by the command c:

{P} c {Q} modifies(c) ∩ fv(R) = ∅
{P ∗R} c {Q ∗R}

26

A simple way to get rid of this side condition is to make local variables
immutable [BTSY06], but this can of course be a major restriction of
the programming language.

2. We can alternatively define stacks almost like heaps: stack = var fin→
(val∅)0. This approach is known as variables as a resource, and
the original paper about this idea [PBC06] goes even further and adds
fractional permissions perm, defining stack = var fin→ (val= × perm)0.

With variables as a resource, we get a more aesthetically-pleasing
frame rule because the syntactic side condition essentially becomes
integrated into the definition of ∗.

{P} c {Q}
{P ∗R} c {Q ∗R}

This is also formally better in cases where modifies(c), the set of local
variables potentially modified by c, is not easy to determine. This hap-
pens in languages where we cannot syntactically see from a program
what variables might be modified, or when that over-approximation is
too coarse [JBK13, MG07].

The drawback is that the convenient similarity between program vari-
ables and logical variables is lost. Program variables have to be treated
like heap locations using some type of points-to predicate, which com-
plicates the rules for variable assignment and conditionals [PBC06]
[DYBG+13, Definition 17].

3.4.1 Open terms and lifting

The two constructions above allow us to have program variables in asser-
tions, but that was only half of the problem. We also need program variables
in expressions, including logical expressions that are not part of the program-
ming language. For instance, we might like to assert that n > m + 1, where
n and m are written in a sans-serif font because they are program variables;
i.e., symbols of type var .

If we are using variables as a resource, the example assertion above could
be written as

∃m. m 7→m ∗ ∃n. n 7→ n ∧ 〈n > m+ 1〉.

Notice first the distinction between the variable name m and its value m,
which makes the formula somewhat verbose. Syntactic sugar has been pro-
posed to reduce this somewhat [PBC06], but it comes at a price: expected
identities such as e1 6= e2 ≡ ¬(e1 = e2) fail to hold. On the other hand, the
verbosity is not much of a burden in assembly language, where the “pro-
gram variables” are uninformative register names, and their values tend to
be named differently from the registers that hold them [JBK13, MG07].

27

The rest of this section tries to follow the Hoare-logic tradition of refer-
ring to program variables from deep inside expressions. As a first step, our
example assertion of n > m + 1 can be written formally as

{(s, h) | s(n) > s(m) + 1},

but this is undesirable as it exposes the stack s, which increases verbosity
and looks quite different from standard presentations. With some amount
of syntactic sugar, it can be made practical, though [McC09].

In Charge! [BJB12, BJ], a Coq formalisation of separation logic, we
distinguish between assertions and open assertions, which I will denote here
as

asn , P(heap) and open asn , stack → asn

respectively. The type open asn is a complete BI algebra, and it is in fact
isomorphic4 to P(stackdiscr × heap). In general:

Proposition 3.10. Given a complete BI algebra A and a preordered type
(T,≤), the space of monotonic functions T →≤ A is a complete BI algebra,
where

T →≤ A , {f : T → A | ∀t, t′. t ≤ t′ ⇒ (f(t) ` f(t′))}
and the operators of T →≤ A are defined in terms of the operators on A:

P ∗Q , λt. P (t) ∗Q(t)

emp , λt. emp

P −∗ Q , λt. ∀t′ ≥ t. P (t′) −∗ Q(t′)

The Heyting operators are defined as in Proposition 3.2 (page 12).

Proof. See [BJ], Lemma BILPreLogic. �

We can extend the definition of open asn to arbitrary types T :

open T , stack → T

This allows us to give a uniform treatment of free variables and substitutions
on open terms regardless of their type. We can lift functions to work on
open terms, ranged over by o:

Definition 3.5. Given an n-ary function f : (T1 × · · · × Tn) → T , define
ḟ : (open T1 × · · · × open Tn)→ open T as

ḟ(o1, . . . , on) , λs. f(o1(s), . . . , on(s)).

We lift constants t : T to ṫ : open T , by taking n = 0 above. Finally,
we overload the same notation to mean something different for program
variables x : var , defining ẋ : open val as ẋ , λs. s(x). �

4They are isomorphic as complete BI algebras, meaning that the isomorphism preserves
all operators.

28

Returning to our example assertion, we may now write it formally as

ṅ >̇ ṁ +̇ 1̇.

We can just as easily lift functions from the metalogic that do not also exist
as programming-language expressions; for instance, given fac : N → N, we
can express that variable n holds the factorial of variable m as

ṅ =̇ ˙fac(ṁ).

As a final and important example, we can lift operators on types that have no
representation in the programming language; e.g., list cons and recursively-
defined list predicates [BJB12]. This lets us give a satisfying formal account
of how we reason with arbitrary mathematics inside assertions, without im-
plicitly assuming that the theories we need have been reconstructed from
scratch within open asn.

While the benefits of open T presented thus far could be dismissed as
being superficial, we found in [BJSB11]5 that the lifting concept was cru-
cial for harnessing the abstraction and modularity benefits of higher-order
separation logic. It is a standard pattern of specification in higher-order
separation logic to quantify and parametrise over assertion-logic predicates
[BBTS05, PB08, BJSB11]. This means that formulas tend to involve opaque
predicates F , and eventually we will have to ask what are the free variables
of, say, F (e). One would hope that fv(F (e)) ⊆ fv(e), but this depends on
the definition of F . Examples of “undisciplined” F include

F (e) = e =̇ ẋ

F (e) = e[y/x] =̇ 0̇

F (e) = 〈x ∈ fv(e)〉

If there is only one type of assertions, P(stack×heap), then it is difficult
to statically rule out such undesired values in a shallow embedding. See the
discussions in [App06], where side conditions about free variables and sub-
stitutions have to be carried around with predicates. In contrast, the lifting
approach always gives us well-behaved free variables and substitutions. The
following two subsections will define semantic notions of free variables and
substitutions such that the following holds:

fv(ḟ(o1, . . . , on)) ⊆ fv(o1) ∪ . . . ∪ fv(on)

ḟ(o1, . . . , on)[ē/x̄] = ḟ(o1[ē/x̄], . . . , on[ē/x̄])

For further examples and motivation, see [BJSB11, BJB12].

5 In that paper, open T is called sm T , and lifting is written f̂ instead of ḟ .

29

3.4.2 Free variables

Following Appel et al. [AB07], we can characterise free variables semantically
by saying that x is free in o : open T when a change to x can cause a change
to o:

fv(o) , {x | ∃s, v. o(s) 6= o(s[x := v])}

An open term can have an infinite number of free variables; for instance,
every variable is free in ∀x : var . ẋ =̇ 0̇. We might like to forbid such terms,
but it can be hard to do without restricting expressiveness, and it turns
out we do not need to. Compare this to nominal logic [Pit01], which is
much more well-behaved. There, open terms have a finite number of free
variables and elegant support for binders in the programming language, but
the approach requires the entire metalogic to be replaced.

The definition of fv satisfies convenient rules for how it applies to pointwise-
lifted functions and to variables:

fv(ḟ(o1, . . . , on)) ⊆ fv(o1) ∪ . . . ∪ fv(on)

fv(ẋ) ⊆ {x}

The property on ḟ only holds with inclusion, not equality, since a variable
may not be semantically free even if it occurs in an expression – for instance,
fv(ẋ −̇ ẋ) = ∅. The property on ẋ of course holds with equality for any non-
trivial choice of val .

3.4.3 Substitutions

It is standard, both in deep and shallow embeddings, to define a substitution
ρ : subst as a function from variables to expressions, which here means

subst , var → open val

Expressions, ranged over by e, are of type open val in their shallowly-
embedded form. A simultaneous substitution of n distinct variables can
be defined as

[e1, . . . , en / x1, . . . , xn] , λx.

{
ei if x = xi for some i

ẋ otherwise

We can then define a semantic notion of applying a substitution to an
open term. This is written here with postfix notation as per tradition, and
it is defined in terms of applying a substitution to a stack.

oρ , λs. o(sρ), where

sρ , λx. ρ(x)(s)

30

From these definitions, we can prove as lemmas how substitution acts
on pointwise-lifted functions and on variables.

(ḟ(o1, . . . , on))ρ = ḟ(o1ρ, . . . , onρ)

(ẋ)ρ = ρ(x)

Contrast this to how substitutions work in a deep embedding: the lem-
mas above about how ρ acts on ḟ and ẋ would be taken as the definition of
substitution on syntactic terms, and our definition of oρ would instead be
proved as a lemma [SBP09, Lemma 10] [Kri12, Lemma 28.2.a.ii].

3.4.4 Typed values

Separation logic is often applied to typed programming languages such as
Java [Par05, BJSB11] or C [TKN07, AB07]. The typical approach is then to
generalise the syntax and operational semantics to remove static types and
let the separation logic enforce typing instead – a program logic generalises
a simple type system, so it is a burden to have both. It is standard [Rey02,
AB07, McC09, TSFC09, SBP10, BJSB11] to do as we have been doing since
Section 3.3.1 and define a type val as a tagged union of integers, pointers,
Booleans and any other types that can be stored in local variables or on the
heap.

The question is then whether an arithmetic operator, such as >, should
have type val × val → val or int × int → bool . In the first approach, we can
immediately write logic expressions such as ẋ >̇ ẏ, and the types will match
up. On the other hand, we need to have an answer for how to compare,
say, a pointer with a Boolean, even though such a comparison could never
happen in the original, typed, programming language. This issue extends
to any other operator we want to lift from the metalogic.

In the other approach, where (>) : int × int → bool , we cannot write
ẋ >̇ ẏ, since >̇ has type open int × open int → open bool while ẋ and ẏ have
type open val . One option is to read variables not as an untyped ẋ : open val
but as a typed intvar(x) : open int etc. Then we can write intvar(x) >̇
intvar(y). The problem that a value could have an unexpected type is now
replaced with the problem that a variable can have an unexpected type, and
intvar will have to return a dummy value, such as 0, if it reads a non-int .

We have tried both approaches in Charge! [BJSB11, BJB12], and they
both ended up littering specifications and proofs with distracting coercions
in and out of val .

A third approach is to make expression evaluation partial [PBC06, AB07],
but this has its own set of problems; for instance, expected identities such
as e1 6= e2 ≡ ¬(e1 = e2) no longer hold [PBC06]; here, (6=,=) are partial
expressions, and ¬ is from the assertion logic. Despite this, many authors
model stacks as partial functions without explaining what happens when
lookup fails.

31

It is worth looking at two separation logics that are not affected by these
problems at all, even down to the last formal detail.

• In [JBK13, KBJD13], we define a separation logic for x86 machine
code. Assertions are of type P(Σ), where

Σ = (register fin→ (DWORD∅)0)×
(flag fin→ (bool∅)0)×
(DWORD fin→ (BYTE ∅)0)

The three components in the product denote CPU registers, CPU flags
and main memory respectively; types BYTE and DWORD denote
bool8 and bool32 respectively.

The registers and flags together can be thought of as the local variables
– the stack, in our current terminology – and this stack can store both
DWORD and bool values. The separation-algebra annotations on Σ
reveal that we are using the variables-as-a-resource approach, but this
is not the essence of why types on the stack work out here. It works
because there is a separate name space for the registers and flags; i.e.,
EAX is a register, and it is clear from its name only that it holds
a DWORD and not a bool . This approach can also work in more
conventional programming languages [CGZ05].

The main memory can be thought of as the heap in our current termi-
nology. Types on the heap work out for a completely different reason
than for the stack. To let us store other things than BYTE s in mem-
ory, there is essentially a points-to predicate 7→T for every type T
that has a defined decoding from byte sequences to T . Then l 7→T v
holds when v : T , and the memory contents starting at l decodes to v.
See also [TKN07, AM13] for related approaches with slightly different
goals.

• Another approach is to not replace the type system with a program
logic but instead extend the type system until it becomes as powerful
as a program logic. Programming-language terms with side effects,
such as heap write, are given a type describing those effects, such
as {P}{Q}, where P and Q can refer to program variables. Logical
entailment is encoded as subtyping.

Examples include [BTSY06, NAMB07, Pot08, KTDG12]. Since this
requires either a deep embedding or reverification of the whole metathe-
ory [NMS+08, CMM+09], we lose the advantages gained from having
a shallow embedding. Features such as higher kinds and dependent
types must be re-created within the type system rather than borrowed
from the metalogic. See also the discussion in Section 4.3.2.

32

The unproblematic logics mentioned above have one thing in common:
they do not define a val type, but instead they keep all programming-
language types explicit and separate.

The problem also seems to go away when using variables as a resource.
Recall the example from Section 3.4.1, where we wrote

∃m. m 7→m ∗ ∃n. n 7→ n ∧ 〈n > m+ 1〉.

In a setting where the injection from int to val is called intval , we can write
this assertion more explicitly as

∃m : int . m 7→ intval(m) ∗ ∃n : int . n 7→ intval(n) ∧ 〈n > m+ 1〉.

This solves the problem and can be useful for any type T with an injective
function T → val . On the other hand, variables as a resource remains very
verbose and does not look like standard Hoare logic.

The above pattern for getting typed program variables using a stack
version of points-to predicate will work just as well for any standard heap
points-to predicate. Since separation logic, with very few exceptions [SJP10,
PS12], forbids direct heap references in expressions, we are already forced
into this pattern of existential quantification and distinction between a heap
location and its value, so this may as well be used to get stronger typing.

4 Specifications

The primitive unit of specification in separation logic is usually the Hoare
triple. In the most basic form, in a shallow embedding, the triple is a
predicate in the metalogic. Section 4.1 discusses definitions and inference
rules for the triple based on this assumption.

Section 4.2 will demonstrate benefits and techniques for considering the
triple instead as a formula of specification logic [Rey82], which allows us
to give a logical account of the context in which a given triple holds.

4.1 Hoare triples

4.1.1 Definitions

The Hoare triple is where the assertion logic from Section 3 meets the oper-
ational semantics from Section 2. The Hoare triple for partial correctness
is usually defined to mean, intuitively, “for any state satisfying the precondi-
tion, no execution from that state will crash, and any terminating execution
from that state will result in a state satisfying the postcondition”. In the
most basic form, the triple is defined as

{P} c {Q}1 , ∀σ ∈ P. ¬(σ, c fail) ∧
∀σ′. σ, c σ′ ⇒ σ′ ∈ Q

33

For partial correctness, we are content with ignoring divergence, but we will
not ignore failure.

Contrast this to total correctness, where we additionally require the
command to terminate from any state satisfying the precondition. If there
is a relation σ, c ∞ meaning that σ, c may diverge, then a basic definition
of the Hoare triple for total correctness can be

[P] c [Q]2 , ∀σ ∈ P. ¬(σ, c fail) ∧ ¬(σ, c ∞)
∀σ′. σ, c σ′ ⇒ σ′ ∈ Q

The relation σ, c ∞ is a simple coinductive definition for a small-step
semantics, and it was discussed for big-step semantics in Section 2.1. An-
other approach is to describe the absence of failure and divergence together
in one predicate [Nip02].

If the semantics is deterministic, then total correctness can be defined
much more succinctly as

[P] c [Q]3 , ∀σ ∈ P. ∃σ′. σ, c σ′ ∧ σ′ ∈ Q

Total correctness is treated only in a minor portion of the separation-logic
literature. It can be argued that there is no practical difference between a
diverging program and one that terminates after a million years, but total
correctness is nevertheless important for discovering bugs. See [Atk10] for
an interesting take on amortised running-time analysis with separation logic.

The remainder of this chapter will discuss partial correctness only, but
most concepts can be extended to total correctness.

The triples defined above all satisfy the rule of consequence and the
existential rule:

P ` P ′ {P ′} c {Q′} Q′ ` Q
{P} c {Q}

∀x. {P (x)} c {Q}
{∃x. P (x)} c {Q}

Whether they satisfy the frame rule, however, depends on whether the
operational semantics satisfies the frame property and safety monotonicity6,
as discussed in Section 2. If these properties should not hold, we can still
get the frame rule by instead defining the triple as follows:

{P} c {Q}4 , ∀R. {P ∗R} c {Q ∗R}1

With this definition, we are guaranteed to have the rule of consequence, the
existential rule and the frame rule. The technique was first used [BTSY06]
in the setting of a higher-order programming language, where it was not
clear how to define the frame property, let alone prove it [RS06, BRSY08].

The new triple, {P} c {Q}4, is sound with respect to {P} c {Q}1 but
may not be complete. For example, if the memory allocator is determinis-
tic and always allocates the smallest free location [YO02], then we can no

6 Safety monotonicity is not required for an affine assertion logic [BJSB11].

34

longer prove a triple that describes this fact; we can only prove the usual
triple for allocation, where the new location is existentially quantified in the
postcondition. This can be considered a shortcoming of the theory or a gain
in abstraction, depending on viewpoint.

So far, we have implicitly assumed that assertions belong to a complete
BI algebra of type P≤(state) as constructed in Section 3.3.4, where state
is the type of states in the operational semantics. But interesting sepa-
ration logics often have some form of instrumentation, or annotations, in
the assertions that is not present in the operational semantics. One exam-
ple is fractional permissions [BCOP05], where each heap location has a
permission value as well as a data value.

A powerful pattern for defining a triple in such cases has recently emerged
[DYBG+13, JB12]. A function reify : asn → P(state) is defined to translate
from instrumented assertions to machine state. Then the triple can be
defined as

{P} c {Q}5 , ∀R : asn. {reify(P ∗R)} c {reify(Q ∗R)}1

We still require asn to be a complete BI algebra, but P(state) need not be.
If we additionally require reify to preserve existentials7 and to be covariant
with respect to entailment8, then the rules of consequence, existential and
frame all hold for this triple. Those two properties always hold [JB11,
DYBG+13] if asn has been constructed from a separation algebra Σ like
in Section 3.3.4 and the reify function has been lifted from some f : Σ →
P(state) as

reify(P) =
⋃
a∈P

f(a)

4.1.2 Structural rules

An inference rule is informally called a structural rule when all Hoare
triples in it have the same universally-quantified c as their command.

We have already discussed the rule of consequence, the existential rule
and the frame rule:

P ` P ′ {P ′} c {Q′} Q′ ` Q
Consequence{P} c {Q}

∀x. {P (x)} c {Q}
Exists{∃x. P (x)} c {Q}

{P} c {Q}
Frame{P ∗R} c {Q ∗R}

In Section 1.2, I attempted to motivate why these three rules are essential in
a separation logic. Any Hoare triple that does not satisfy these rules should
come with a good explanation of why not.

7 Means that reify(∃x : T. P (x)) =
⋃

x:T reify(P (x)).
8 Means that P ` Q implies reify(P) ⊆ reify(Q).

35

There are a few variations on the above rules. Many authors print the
existential rule as

∀x. {P (x)} c {Q(x)}
Exists′{∃x. P (x)} c {∃x. Q(x)}

This has a somewhat satisfying symmetry to it, but it is derivable from
Exists and Consequence.

The disjunction rule and vacuity rule [Rey11] shown below are deriv-
able from Exists because ∨ and ⊥ can be seen as special cases of the exis-
tential quantifier as shown in Section 3.2.2.

{P1} c {Q} {P2} c {Q}
Disjunction{P1 ∨ P2} c {Q}

Vacuity{⊥} c {Q}

Like the existential rule, the disjunction rule often appears in the literature
in a more symmetric but redundant form.

As discussed in Section 3.4, the frame rule typically comes with the side
condition that modifies(c)∩ fv(R) = ∅. We have explored a variation of the
frame rule in the Charge! platform [BJB12, BJ], where that side condition
is replaced by a substitution:

{P} c {Q}
Frame{P ∗R} c {Q ∗ ∃v̄ : val . R[v̄/modifies(c)]}

The notation is meant to suggest that if modifies(c) = {x1, . . . , xn}, then
∃v̄ : val . R[v̄/modifies(c)] means

∃v1, . . . , vn : val . R[v1, . . . , vn / x1, . . . , xn]

Essentially, instead of preventing the frame rule from being applied at all,
we weaken it to the extent needed for it to hold. This rule is not formally
stronger than the standard one, but it allowed us to develop a separation
logic without the concept of free variables, which meant there was one less
concept to build theory and automation for.

Finally, the conjunction rule is of some interest:

{P} c {Q1} {P} c {Q2}
Conjunction{P} c {Q1 ∧Q2}

This rule holds for simple definitions of the Hoare triple, such as {P} c {Q}1
through [P] c [Q]3 above, but it fails for many other definitions. Much
has been written about what restrictions must be placed on the logic for
the conjunction rule to hold [OYR04, BTSY06, O’H07, DYGW11, GBC11,
JB11], but comparatively little has been written about why this rule is useful
at all.

36

Some generalisations of the conjunction rule have been proposed. When
it holds for binary conjunctions, then it typically also holds for universal
quantification over a non-empty domain [Rey11, DYBG+13]:

∀x : T. {P} c {Q(x)} T 6= ∅
Universal{P} c {∀x : T. Q(x)}

In fictional separation logic [JB11], the conjunction rule is generalised to
the recombination rule, parametrised over a binary operator 2:

{P} c {Q1} {P} c {Q2}
Recombination{P} c {Q1 2Q2}

This rule holds for 2 = ∧ in some cases and for 2 = ∗ in other cases [JB11].

4.2 Specification logic

4.2.1 Example: procedure map

The machine state of more realistic languages contains more than a stack
and a heap. A language with procedures could, for example, have some
form of map m : M from procedure names to their implementation code.
The map could in principle be added to the machine state alongside the
stack and heap, so states would be σ = (s, h,m). But when no command
can modify m, at least in a big-step sense, it becomes redundant to have
m repeated in the operational semantics on both sides of . It is equally
redundant in Hoare triples to repeat facts about the m-component in both
pre- and postcondition.

The solution in big-step semantics is to separate the state σ that may
change after running a command from the state m that may not. A big-
step operational semantics is then a relation of the form σ, c m σ′, and a
similar relation could be derived from a small-step semantics. The Hoare
triple could be extended analogously, yielding a quadruple; e.g.,

m {P} c {Q}6 , ∀σ ∈ P. ¬(σ, c fail) ∧
∀σ′. σ, c m σ′ ⇒ σ′ ∈ Q

This definition is not very practical, though: it requires all quadruples to
carry the m-parameter even though it is only relevant when c is a procedure
call.

The solution is to define a logic spec of specifications [Rey82] in which,
intuitively, the truth value of a formula is measured by how many m it holds
for. The Hoare triple is a formula in this logic, defined along the lines of

{P} c {Q}7 , {m | m {P} c {Q}6}

37

The triple now appears to have only three parameters – the m-parameter
has been hidden just like the heap is hidden in the assertion logic. Defining

spec , P≤(M)

for an appropriate preorder, spec is a complete Heyting algebra, defined with
a Kripke model as in Proposition 3.1 (page 12).

It remains to choose the preorder. Since separation logic emphasises
local and modular reasoning, it is beneficial to let the preorder be the ex-
tension ordering v on M . This ensures that any specification that holds for
procedure map m also holds in any m′ w m, thus enabling local reasoning
for procedures just as the frame rule enables it for heaps.

We must then show closure under v for all atomic formulas in spec,
while the Kripke construction guarantees it for the logical connectives. If
the big-step relation is closed under extension of the m-component, then we
have {P} c {Q}7 ∈ Pv(M) as desired. Otherwise, a technique similar to
that used in {P} c {Q}4 applies, and we can define a {P} c {Q}8 ∈ Pv(M):

{P} c {Q}8 , {m | ∀m′ w m. m′ {P} c {Q}6}

We can additionally define a primitive specification f(x̄) 7→c to say that a
procedure f has parameters x̄ and body c. Despite the similarity to points-
to for heaps, no one has yet found a good reason to separate specifications
with ∗! With these ingredients, we can define a formula in Pv(M) to assert
that f has specification (P,Q):

f(x̄) 7→ {P}{Q} , ∃c. f(x̄) 7→ c ∧ {P} c {Q}

See [BJSB11, JBK13] for details and variations on the this formula.
Note that if local reasoning for procedures is not desired, and the proce-

dure map is static and global, then a much simpler technique applies: make
the whole theory parametric in this map [Nip02, PB05, BJSB11]. This is
the most common approach, but it results in logics that are not formally
modular because there is formally a different theory of program verification
for each program! That is, given a program fragment (with its procedure
map), one obtains a theory in which to verify this one fragment. When mul-
tiple fragments have been verified this way, each in their own theory, there is
no explicit theorem that tells us that the specifications of all the fragments
are guaranteed valid in the theory obtained for the composite program.

4.2.2 Other examples

Above, we saw just one example of what a specification logic can do. A rule
of thumb is that any state that remains unchanged across commands belongs
in the specification logic, and any other state belongs in the assertion logic.

38

The specification logics considered here are complete Heyting algebras,
constructed using the techniques in Section 3.1.3.

Below are some additional applications of specification logic. The various
ingredients in the model of specifications tend not to interfere, so a full-
featured specification logic can be modelled as P≤1,...,≤n(T1 × · · · × Tn),
generalising from the descriptions of P≤i(Ti) below.

Aliasing in call-by-name. The original specification logic by Reynolds
[Rey82] was used to describe procedure mappings, much as we saw
in Section 4.2.1, but also to assert non-aliasing between procedure
parameters in the call-by-name setting of ALGOL 60. Unlike heap
aliasing, which can be changed by commands, parameter aliasing stays
fixed throughout a scope and is thus a good candidate for describing
in the specification logic.

Immutable variables. Languages such as C and Java allow declaring cer-
tain variables as constant or immutable. In ML-like languages, all
variables are immutable. All such variables could be described in the
specification logic rather than the assertion logic. I have not seen this
done in practice, though.

Recursion. To aid in verifying recursive procedures, it has proved useful
to add natural numbers to the specification logic to count either the
depth of recursion [vO99, Nip02] or the number of execution steps
remaining [AM01, AMRV07, BJSB11]. This is known as step index-
ing. In both cases, specifications are downwards-closed sets of natural
numbers: spec = P≥(N). Intuitively, the truth value of a specifica-
tion measures how many steps of execution (or depth of procedure
calls) the specification will hold for; a valid specification holds for any
number of steps (or any depth of procedure calls).

This model enables the definition of a later-operator [Nak00, AMRV07,
DAB09, DAH08, JBK13] on specifications:

.S , {k | ∀k′ < k. k′ ∈ S}

Intuitively, .S means that S will hold after one step of execution (or
for recursive calls one level deeper). The rule for procedure calls then
requires only .(f(x̄) 7→ {P}{Q}) in its assumptions, and we can get
this assumption by applying the Löb rule with S = f(x̄) 7→ {P}{Q}:

.S ` S
Löb` S

Counting recursion depth clearly belongs in the specification logic be-
cause the depth cannot have changed after executing some c. On the

39

other hand, counting steps of program execution can also be done use-
fully in the assertions, which allows for a .-operator in the assertion
logic [BJSB11].

Recursive specifications. A specification can be defined recursively just
like any other predicate, but this will always be subject to well-formed-
ness restrictions, typically requiring the recursive occurrence to be in a
positive position in the formula, or require a well-founded term to
become smaller with each self-application. For instance, the existence
of a specification S satisfying S ≡ S ⇒ ⊥ would render the logic
inconsistent9.

Having step-indexes in the specifications, as sketched above, allows
recursive definitions with a third type of well-formedness restriction:
contractiveness [AM01, DAH08, BRS+11]. This allows definitions in
which the recursive occurrence can be anywhere, as long as it is syn-
tactically under a .-operator. This allows defining an S such that
S ≡ (.S)⇒ ⊥. This was a silly example, but useful examples can be
found in [DAH08, BRS+11].

A powerful alternative to this would be to use a metalogic that has a
.-operator and then lift this into the separation logic. For an example,
see the work on impredicative CAP [SB13a], which uses the topos of
trees [BMSS12] as its metalogic.

Frames. Consider a small variation on {P} c {Q}4:

{P} c {Q}9 , {R | {P ∗R} c {Q ∗R}1}

Then specifications are predicates on assertions, and the validity of a
triple is intuitively measured by how many assertions can be framed
on to it. This immediately gives us a frame operator [BTSY05,
BTSY06, Kri12, JBK13], traditionally written ⊗, defined as

S ⊗R , {P | (P ∗R) ∈ S}

It satisfies the following identity, which allows us to write more concise
specifications that do not repeat assertions between pre- and postcon-
dition:

{P} c {Q}9 ⊗R ≡ {P ∗R} c {Q ∗R}9

As in the procedure-map example above, when we make spec a Kripke
model, we can extend any useful closure property from atomic specifi-
cations to the full logic. Here, we expect that the frame rule holds for
triples; i.e.,

{P} c {Q}9 ` {P} c {Q}9 ⊗R
9 Exercise! First prove S ` ⊥, which proves ` S, and together they prove ` ⊥.

40

If so, we can extend the frame rule to all specifications by defining
spec = Pv(asn), where v is the extension ordering on the monoid
(asn, ∗, emp). This gives the following inference rule, called the higher-
order frame rule.

S ` S ⊗R
Under certain conditions, this rule allows framing invariants onto triples
in negative positions of an entailment, whereas the ordinary frame rule
only allows it for positive positions. Examples of its utility as a second-
order frame rule are found in [OYR04, BTSY06, JBK13]; an example
of using it as a third-order frame rule is in [BTSY06].

4.2.3 Structural rules in specification logic

The structural rules discussed in Section 4.1.2 can now typically10 be entail-
ments in the specification logic rather than the metalogic. For example, the
existential rule becomes

Exists∀x. {P (x)} c {Q} ` {∃x. P (x)} c {Q}

To get a presentation that looks more standard, it is customary to quantify
over all specifications S and instead print the rule as

S ` ∀x. {P (x)} c {Q}
Exists

S ` {∃x. P (x)} c {Q}

If specifications can be usefully embedded in assertions, then the rule of
consequence can also make use of this S; see the consequence rule in [PB08]
for an example.

4.3 Alternative formulations

An assertion logic, as developed in Section 3, can also serve as ingredient in
other theories than the specification logics defined above. A brief overview
is given here.

4.3.1 Rigid specification logics

The specification logics described above are complete Heyting algebras and
thus full higher-order logics. Less expressive and more disciplined logics
have also been proposed. In particular, the logic of Parkinson and Bierman
[PB08], extended by van Staden and Calcagno [vSC10], stands out as a
specification logic that is expressive enough to specify most object-oriented
code but requires specifications to follow a rigid structure that is essentially
a mirror image of the class structure of an object-oriented program.

10 I know of one exception to this: the higher-order frame rule in [SBRY11].

41

Several challenging specifications have been expressed in this system
[PB08, DP08]. On the other hand, the extensions made in [vSC10] cer-
tainly extended the range of useful specifications that could be expressed
even though the original system perhaps seemed powerful enough at first
glance. It is likely that a third case study would expose the need for fur-
ther extensions, and so on. Essentially, these rigid logics need almost all
the features of a complete Heyting algebra: auxiliary variables are univer-
sal quantifiers, abstract predicates are existential quantifiers, specification
refinement is entailment, specification combination is conjunction, and so
on.

When the specification logic is a complete Heyting algebra from the
beginning, there is more freedom to use it in new ways without requiring
extensions. Rigid specification logics can then be built on top as needed,
hopefully reducing the burden of the soundness proof for these.

Compare [KAB+09, BJSB11], where programs are specified in a separa-
tion logic in which both specifications and assertions are higher-order logics.
The drawback is that specifications can be hard to understand when their
structure does not follow a known pattern. They can be more or less verbose
compared to a specification in a rigid framework, depending on whether that
framework is a good fit for the code at hand.

Rigid logics seem to be a good fit to model stand-alone verification tools
with extensive automation [vSC10, DP08, JSP12]. Full higher-order logics
tend to be embedded in proof assistants such as Coq and HOL, where au-
tomation is guaranteed to be sound but runs orders of magnitude slower
[CMM+09, Chl11, Chl13, McC09, Tue09, MSBS12, BJB12, JBK13].

4.3.2 Type systems

It is possible to formulate a separation logic as a type system. Type inference
will of course be undecidable, and type checking will require annotations
corresponding to proofs in a program logic.

In Hoare type theory [NMB08, NAMB07, PBNM08], a computation has
a monadic type, similar to the IO monad in Haskell but with pre- and
postcondition annotations. Ignoring variable contexts, the typing judgement
c : {P} x:A {Q} means that computation c has precondition P and returns
a value of type A, bound as x in postcondition Q. Essentially, their types
correspond to our specifications. Pre- and postconditions are predicates on
the heap, almost exactly as we defined them in Section 3.

In the type system of Pottier [Pot08, SBP+12], as well as Krishnaswami
et al. [KTDG12], their types essentially correspond to our assertions. Like
in ML, a computation is a function, and the semantics has to be call-by-
value to serialise side effects predictably. A function that writes to a heap
cell has a dependent type along the lines of Πl. cap(l)× val → cap(l), where
cap(l) is an abstract capability to access location l. The capability and the

42

function space are linear, and the capability is therefore returned again by
the function; otherwise, it would be lost to the caller. It is understood that
capability tokens will be compiled away, but they do have a representation
in the term language. Capability types can be composed with separating
conjunction, which makes these systems behave much like separation logic.

One thing to beware of when building a separation-logic type system
is the handling of logical variables. Consider for instance a procedure that
increments the value at a given heap location, specified in the style of Sec-
tion 4.2.1:

∀i. inc(x) 7→ {x 7→ i}{x 7→ i+ 1}

There is a clear distinction here between x, which has a run-time repre-
sentation, and i, which exists purely in the specification. If the arrow and
dependent-product types denote function spaces, as in the example with ca-
pabilities above, then there must be a different mechanism for quantifying
over a logical variable. Nanevski et al. proposed “binary postconditions”
[NVB10, NMS+08] for addressing this in Hoare type theory, but their so-
lution restricts the scope of logical variables to a single triple. Another
branch of Hoare type theory [CMM+09] proposed explicitly marking logical
variables as such, but this required extending Coq with an axiom whose
soundness has not been formally established. The type system in [BTSY06]
does not include logical variables, and thus it cannot specify inc. The original
system of Pottier [Pot08] had the same problem, but this was later addressed
[PP11] by adding logical universal quantifiers and singleton types, which is
also how [KTDG12] handles the problem.

5 Conclusion

At the time of writing this text, the ACM Digital Library lists 147 publica-
tions with the keyword “separation logic”. It is well known that these have
a lot in common underneath their cosmetic differences. Unfortunately, those
commonalities are typically treated as design patterns to draw inspiration
from when building a separation-logic theory from scratch, rather than a
formally reusable theory that can be built upon.

In this text, I have presented a core of standard definitions and theorems
in the hope that future texts on separation logic can take these for granted
rather than recreate them. Those definitions lead to expressive higher-order
logics without adding additional complexity over the first-order case.

In particular, a typical assertion logic should arise as the powerset of a
separation algebra, closed under a preorder. The interesting contribution
of future theories should be the choice of separation algebra and preorder,
while turning this into a logic is standard. Similarly, specification logics
are made easy since they arise from standard Kripke models, which auto-
matically contain all the operators and quantifiers needed for abstract and

43

modular specifications. Finally, simple but fully formal treatment of pro-
gram variables can be achieved using open terms, although this is not as
widely applicable as the other theories mentioned.

At the same time, we have discussed the aspects that still remain patterns
and cosmetics. Variations in the operational semantics and Hoare triple are
necessarily language-specific, and there is rarely any formal reuse between
theories, but there are still many design patterns to be borrowed.

Much more ought to be said about concurrent separation logic and mod-
els that use guarded recursion, but these areas are still very much in flux.
Hopefully, general and reusable theories will eventually emerge from those
lines of research.

Acknowledgements. I would like to thank the proof readers – Jesper
Bengtson, Lars Birkedal, Aleš Bizjak and Marco Paviotti – for helpful feed-
back and discussions.

44

Index

adequate, 5
adjunction, 9
affine BI, 15
assertion logic, 2
assertions, 3
atomic, 8

BBI, 15
big-step, 5
Boolean BI, 15

cancellativity, 18
classical separation logic, 15
compare-and-swap, 8
complete BBI algebra, 15
complete BI algebra, 13
complete Boolean algebra, 15
complete Heyting algebra, 8
composition, 16
concurrent abstract predicates, 18
conjunction rule, 18, 36
core, 19

deep embedding, 10
discrete separation algebra, 23
disjunction rule, 36
duplicable, 19

empty permission algebra, 24
entailment, 8
equality permission algebra, 24
existential rule, 34
extension ordering, 17, 20

failure, 6
finitely-supported functions, 23
fork command, 7
fractional permissions, 17, 35
frame operator, 40
free variable, 30

Galois connection, 9
guard, 25

higher-order frame rule, 41
Hoare triple, 33
Hoare-triple, 3

instrumented, 17
instrumented semantics, 5
interference relation, 20
intuitionistic separation logic, 15

Kripke model, 12

Löb rule, 39
later-operator, 39
law of the excluded middle, 13, 15
lift, 28
linear, 43
local reasoning for procedures, 38
locations, 16
locks, 8
logical variables, 10

metalogic, 3
models, 10
monotonic counter, 20
multiple units, 18

non-deterministic monoid, 19
non-termination, 6

open terms, 28

parallel operator, 7
partial commutative monoid, 18
partial correctness, 33
permission algebra, 23
positive position, 40
precedence, 13
preorder, 12
product, 22
program variables, 10, 25
programming language, 2

recombination rule, 37

45

relational monoid, 19
rule of consequence, 34

separation algebra, 18, 19
sequentially-consistent, 8
shallow embedding, 10
small-step, 5
specification logic, 2, 33
specifications, 3
stack, 26
step indexing, 39
step-indexing, 25
store, 26
structural rule, 35
stuck, 6
successful termination, 6

tagged union, 23
topos of trees, 25
total, 19
total correctness, 34

vacuity rule, 36
valid, 9
values, 16
variables as a resource, 27

weak-memory, 8
weakening of ∗, 15
well-founded, 40

46

References

[AB07] Andrew W. Appel and Sandrine Blazy. Separation logic for
small-step C Minor. In Proceedings of TPHOLs, 2007.

[AM01] A. W. Appel and D. McAllester. An indexed model of recur-
sive types for foundational proof-carrying code. ACM Trans.
Program. Lang. Syst., 2001.

[AM13] Reynald Affeldt and Nicolas Marti. Towards formal verification
of TLS network packet processing written in C. In Proceedings
of PLPV, 2013.

[AMRV07] Andrew W. Appel, Paul-André Melliès, Christopher D.
Richards, and Jérôme Vouillon. A very modal model of a mod-
ern, major, general type system. In Proceedings of POPL, 2007.

[App06] Andrew W. Appel. Tactics for separation logic, Draft of Jan-
uary 2006. http://www.cs.princeton.edu/~appel/papers/

septacs.pdf.

[Atk10] Robert Atkey. Amortised resource analysis with separation
logic. Programming Languages and Systems, pages 85–103,
2010.

[BBTS05] B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines
and higher-order separation logic. In Proceedings of ESOP,
2005.

[BC10] James Brotherston and Cristiano Calcagno. Classical BI: Its
semantics and proof theory. Logical Methods in Computer Sci-
ence, 6(3), 2010.

[BCOP05] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson.
Permission accounting in separation logic. In Proceedings of
POPL, 2005.

[BJ] Jesper Bengtson and Jonas B. Jensen. Charge! development
version. https://github.com/jesper-bengtson/Charge.

[BJB12] Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal.
Charge! – a framework for higher-order separation logic in
Coq. In Proceedings of ITP, 2012.

[BJSB11] Jesper Bengtson, Jonas Braband Jensen, Filip Sieczkowski, and
Lars Birkedal. Verifying object-oriented programs with higher-
order separation logic in Coq. In Proceedings of ITP, 2011.

47

http://www.cs.princeton.edu/~appel/papers/septacs.pdf
http://www.cs.princeton.edu/~appel/papers/septacs.pdf
https://github.com/jesper-bengtson/Charge

[BK10] J. Brotherston and M. Kanovich. Undecidability of proposi-
tional separation logic and its neighbours. In Proceedings of
LICS, 2010.

[BMSS12] L. Birkedal, R. Møgelberg, J. Schwinghammer, and
K. Støvring. First steps in synthetic guarded domain theory:
step-indexing in the topos of trees. Logical Methods in Com-
puter Science, 8(4), October 2012.

[Boy03] John Boyland. Checking interference with fractional permis-
sions. In Proceedings of SAS, 2003.

[Bro07] Stephen Brookes. A semantics for concurrent separation logic.
Theoretical Computer Science, 375(1):227–270, 2007.

[BRS+11] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring,
J. Thamsborg, and H. Yang. Step-indexed kripke models over
recursive worlds. In Proceedings of POPL, 2011.

[BRSY08] L. Birkedal, B. Reus, J. Schwinghammer, and H. Yang. A
simple model of separation logic for higher-order store. In Pro-
ceedings of ICALP, 2008.

[BTSY05] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of
separation-logic typing and higher-order frame rules. In Pro-
ceedings of LICS, 2005.

[BTSY06] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of
separation-logic typing and higher-order frame rules for Algol-
like languages. Logical Methods in Computer Science, 2(5:1),
August 2006.

[BV13] James Brotherston and Jules Villard. Parametric completeness
for separation theories, Submitted, 2013.

[CGZ05] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Con-
text logic and tree update. In Proceedings of POPL, 2005.

[Chl11] Adam Chlipala. Mostly-automated verification of low-level pro-
grams in computational separation logic. In Proceedings of
PLDI, 2011.

[Chl13] Adam Chlipala. The Bedrock structured programming system.
In Proceedings of ICFP, 2013.

[CMM+09] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham
Shinnar, and Ryan Wisnesky. Effective interactive proofs for
higher-order imperative programs. In Proceedings of ICFP,
2009.

48

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang.
Local action and abstract separation logic. In Proceedings of
LICS, 2007.

[CSV07] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified
self-modifying code. In Proceedings of PLDI, 2007.

[DAB09] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-
indexed logical relations. In Proceedings of LICS, 2009.

[DAH08] Robert Dockins, Andrew W. Appel, and Aquinas Hobor. Mul-
timodal separation logic for reasoning about operational se-
mantics. Electronic Notes in Theoretical Computer Science,
218:5–20, 2008.

[DHA09] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A
fresh look at separation algebras and share accounting. In Pro-
ceedings of APLAS, 2009.

[DP08] Dino Distefano and Matthew J. Parkinson. jstar: towards prac-
tical verification for java. In Proceedings of OOPSLA, 2008.

[DYBG+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner,
Matthew Parkinson, and Hongseok Yang. Views: Composi-
tional reasoning for concurrent programs. In Proceedings of
POPL, 2013.

[DYDG+10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner,
Matthew Parkinson, and Viktor Vafeiadis. Concurrent abstract
predicates. In Proceedings of ECOOP, 2010.

[DYGW10] Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheel-
house. Abstraction and refinement for local reasoning. In Pro-
ceedings of VSTTE, 2010.

[DYGW11] Thomas Dinsdale-Young, Philippa Gardner, and Mark Wheel-
house. Abstraction and refinement for local reasoning, Febru-
ary 2011. Journal submission.

[FFS10] Rodrigo Ferreira, Xinyu Feng, and Zhong Shao. Parameterized
memory models and concurrent separation logic. In Proceedings
of ESOP, 2010.

[GBC+07] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinet-
zky, and Mooly Sagiv. Local reasoning for storable locks and
threads. In Proceedings of APLAS, 2007.

49

[GBC11] Alexey Gotsman, Josh Berdine, and Byron Cook. Precision
and the conjunction rule in concurrent separation logic. In
Proceedings of MFPS, 2011.

[GLW06] Didier Galmiche and Dominique Larchey-Wendling. Expres-
sivity properties of boolean BI through relational models. In
Proceedings of FSTTCS, 2006.

[GMP02] D. Galmiche, D. Méry, and D. Pym. Resource tableaux (ex-
tended abstract). In Proceedings of CSL, 2002.

[GMP05] D. Galmiche, D. Mery, and D. Pym. Semantics of BI and
resource tableaux. Mathematical Structures in Computer Sci-
ence, 15(6):1033–1088, 2005.

[GMS12] Philippa Gardner, Sergio Maffeis, and Gareth Smith. Towards
a program logic for javascript. In Proceedings of POPL, 2012.

[HDV11] C-K Hur, Derek Dreyer, and Viktor Vafeiadis. Separation logic
in the presence of garbage collection. In Proceedings of LICS,
2011.

[Hob11] Aquinas Hobor. Improving the compositionality of separation
algebras, July 2011. Unpublished draft.

[IO01] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion
language for mutable data structures. In Proceedings of POPL,
2001.

[JB11] Jonas Braband Jensen and Lars Birkedal. Fictional separation
logic: Appendix, 2011. http://itu.dk/~jobr/research/

fsl-appendix.pdf.

[JB12] Jonas B. Jensen and Lars Birkedal. Fictional separation logic.
In Proceedings of ESOP, 2012.

[JBK13] Jonas B. Jensen, Nick Benton, and Andrew Kennedy. High-
level separation logic for low-level code. In Proceedings of
POPL, 2013.

[JSP12] Bart Jacobs, Jan Smans, and Frank Piessens. The VeriFast
program verifier: A tutorial, December 2012.

[KAB+09] Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars
Birkedal, Kasper Svendsen, and Alexandre Buisse. Design pat-
terns in separation logic. In In Proceedings of TLDI, 2009.

50

http://itu.dk/~jobr/research/fsl-appendix.pdf
http://itu.dk/~jobr/research/fsl-appendix.pdf

[KBJD13] Andrew Kennedy, Nick Benton, Jonas B. Jensen, and Pierre-
Evariste Dagand. Coq: The world’s best macro assembler? In
Proceedings of PPDP, 2013.

[Kri12] Neelakantan R. Krishnaswami. Verifying Higher-Order Imper-
ative Programs with Higher-Order Separation Logic. PhD the-
sis, Carnegie Mellon University, 2012.

[KTDG12] Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer,
and Deepak Garg. Superficially substructural types. In Pro-
ceedings of ICFP, 2012.

[LG09] Xavier Leroy and Hervé Grall. Coinductive big-step opera-
tional semantics. Information and Computation, 207(2):284–
304, 2009.

[LWN13] Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary
state for coarse-grained concurrency. In Proceedings of POPL,
2013.

[McC09] Andrew McCreight. Practical tactics for separation logic. In
Proceedings of TPHOLs, 2009.

[MG07] M. O. Myreen and M. J. C. Gordon. Hoare logic for realistically
modelled machine code. In Proceedings of TACAS, 2007.

[MSBS12] Hannes Mehnert, Filip Sieczkowski, Lars Birkedal, and Peter
Sestoft. Formalized verification of snapshotable trees: Separa-
tion and sharing. In Proceedings of VSTTE, 2012.

[Myr10] M. O. Myreen. Verified just-in-time compiler on x86. In Pro-
ceedings of POPL, 2010.

[Nak00] Hiroshi Nakano. A modality for recursion. In Proceedings of
LICS, 2000.

[NAMB07] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars
Birkedal. Abstract predicates and mutable ADTs in Hoare
type theory. In In Proceedings of ESOP, 2007.

[Nip02] Tobias Nipkow. Hoare logics for recursive procedures and un-
bounded nondeterminism. In Proceedings of CSL, 2002.

[NMB08] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal.
Hoare Type Theory, Polymorphism and Separation. Journal
of Functional Programming, 18(5–6):865–911, 2008.

51

[NMS+08] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Gov-
ereau, and Lars Birkedal. Ynot: Reasoning with the awkward
squad. In Proceedings of ICFP, 2008.

[NS06] Z. Ni and Z. Shao. Certified assembly programming with em-
bedded code pointers. In Proceedings of POPL, 2006.

[NVB10] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine.
Structuring the verification of heap-manipulating programs. In
Proceedings of POPL, 2010.

[O’H07] Peter W. O’Hearn. Resources, concurrency and local reasoning.
Theor. Comput. Sci., 375(1-3):271–307, 2007.

[O’H12] Peter W. O’Hearn. A primer on separation logic (and auto-
matic program verification and analysis). NATO Science for
Peace and Security Series D, 33:286–318, 2012.

[OP99] Peter W. O’Hearn and David J. Pym. The logic of bunched
implications. Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[OYR04] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In Proceedings of POPL, 2004.

[Par05] Matthew Parkinson. Local Reasoning for Java. PhD thesis,
University of Cambridge, November 2005.

[Par10] Matthew Parkinson. The next 700 separation logics. In Pro-
ceedings of VSTTE, 2010.

[PB05] Matthew J. Parkinson and Gavin M. Bierman. Separation logic
and abstraction. In Proceedings of POPL, 2005.

[PB08] Matthew J. Parkinson and Gavin M. Bierman. Separation
logic, abstraction and inheritance. In Proceedings of POPL,
2008.

[PBC06] M. J. Parkinson, R. Bornat, and C. Calcagno. Variables as
resource in Hoare logic. In Proceedings of LICS, 2006.

[PBNM08] R. L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett.
A realizability model of impredicative Hoare type theory. In
Proceedings of ESOP, 2008.

[Pit01] A. M. Pitts. Nominal logic, a first order theory of names and
binding. In Proceedings of TACS, 2001.

[Pot08] François Pottier. Hiding local state in direct style: a higher-
order anti-frame rule. In Proceedings of LICS, 2008.

52

[Pot13] François Pottier. Syntactic soundness proof of a type-and-
capability system with hidden state. Journal of Functional
Programming, 23(1):38–144, January 2013.

[POY04] David J. Pym, Peter W. O’Hearn, and Hongseok Yang. Pos-
sible worlds and resources: the semantics of bi. Theoretical
Computer Science, 315(1):257—-305, May 2004.

[PP11] Alexandre Pilkiewicz and François Pottier. The essence of
monotonic state. In Proceedings of TLDI, 2011.

[PS12] Matthew Parkinson and Alexander J. Summers. The relation-
ship between separation logic and implicit dynamic frames.
Logical Methods in Computer Science, 2012.

[Pym02] D.J. Pym. The Semantics and Proof Theory of the Logic
of Bunched Implications, volume 26 of Applied Logic Series.
Kluwer Academic Publishers, 2002.

[Rey82] John C. Reynolds. Idealized Algol and its specification logic.
Tools and notions for program construction, pages 121–161,
1982.

[Rey00] J. C. Reynolds. Intuitionistic reasoning about shared mutable
data structure. Millennial Perspectives in Computer Science,
pages 303––321, 2000.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Proceedings of LICS, 2002.

[Rey11] John C. Reynolds. Introduction to separation logic, 2011.
Course notes for 15-818A3 at Carnegie Mellon University.

[RS06] Bernhard Reus and Jan Schwinghammer. Separation logic for
higher-order store. In Proceedings of CSL, 2006.

[SB13a] Kasper Svendsen and Lars Birkedal. Impredicative concurrent
abstract predicates, 2013. Submitted for publication.

[SB13b] Kasper Svendsen and Lars Birkedal. Impredicative concurrent
abstract predicates (technical appendix), 2013.

[SBP09] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Ver-
ifying generics and delegates (technical appendix). Techni-
cal report, IT University of Copenhagen, 2009. Available
at http://itu.dk/~kasv/generics-delegates-tr.pdf or as
part of Kasper Svendsen’s PhD thesis.

53

http://itu.dk/~kasv/generics-delegates-tr.pdf

[SBP10] K. Svendsen, L. Birkedal, and M.J. Parkinson. Verifying gener-
ics and delegates. In Proceedings of ECOOP, 2010.

[SBP+12] J. Schwinghammer, L. Birkedal, F. Pottier, B. Reus,
K. Støvring, and H. Yang. A step-indexed Kripke model of
hidden state. Mathematical Structures in Computer Science,
2012.

[SBP13] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson.
Modular reasoning about separation for concurrent data struc-
tures. In Proceedings of ESOP, 2013.

[SBRY11] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested
Hoare triples and frame rules for higher-order store. Logical
Methods in Computer Science, 7(3:21), July 2011.

[SJP10] Jan Smans, Bart Jacobs, and Frank Piessens. Heap-dependent
expressions in separation logic. In Proceedings of FMOODS,
2010.

[TKN07] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types,
bytes, and separation logic. In Proceedings of POPL, 2007.

[TSFC09] Gang Tan, Zhong Shao, Xinyu Feng, and Hongxu Cai. Weak
updates and separation logic. In Proceedings of APLAS, 2009.

[Tue09] Thomas Tuerk. A formalisation of Smallfoot in HOL. In Pro-
ceedings of TPHOLs, 2009.

[Vaf11] Viktor Vafeiadis. Concurrent separation logic and operational
semantics. Electron. Notes Theor. Comput. Sci., 276:335–351,
September 2011.

[VB08] C. Varming and L. Birkedal. Higher-order separation logic in
Isabelle/HOLCF. Electr. Notes Theor. Comput. Sci., 218:371–
389, 2008.

[VN13] Viktor Vafeiadis and Chinmay Narayan. Relaxed separation
logic: A program logic for C11 concurrency. In Proceedings of
OOPSLA, 2013.

[vO99] David von Oheimb. Hoare logic for mutual recursion and local
variables. 1999.

[vSC10] Stephan van Staden and Cristiano Calcagno. Reasoning about
multiple related abstractions with MultiStar. In Proceedings of
OOPSLA, 2010.

54

[WB11] Ian Wehrman and Josh Berdine. A proposal for weak-memory
local reasoning, Presented at the LOLA workshop, 2011.

[WDP13] John Wickerson, Mike Dodds, and Matthew Parkinson. Ribbon
proofs for separation logic. In Proceedings of ESOP, 2013.

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying machine
code safety: Shallow versus deep embedding. In Proceedings of
TPHOLs, 2004.

[YO02] Hongseok Yang and Peter W. O’Hearn. A semantic basis for
local reasoning. In Proceedings of FoSSaCS, 2002.

55

	1 Introduction
	1.1 Overview
	1.2 What is a separation logic?
	1.3 Contributions

	2 Semantics of the programming language
	2.1 Modelling failure
	2.2 Modelling concurrency

	3 Assertion logic
	3.1 Heyting algebras
	3.1.1 Shallow embedding
	3.1.2 Injecting metalogic propositions
	3.1.3 Kripke models

	3.2 BI algebras
	3.2.1 Classical and intuitionistic logics
	3.2.2 Design freedom

	3.3 Separation algebras
	3.3.1 Heaps
	3.3.2 Motivations for generalisation
	3.3.3 Definitions of separation algebra
	3.3.4 Upwards-closed assertions
	3.3.5 Constructions
	3.3.6 Cyclic definitions

	3.4 Program variables
	3.4.1 Open terms and lifting
	3.4.2 Free variables
	3.4.3 Substitutions
	3.4.4 Typed values

	4 Specifications
	4.1 Hoare triples
	4.1.1 Definitions
	4.1.2 Structural rules

	4.2 Specification logic
	4.2.1 Example: procedure map
	4.2.2 Other examples
	4.2.3 Structural rules in specification logic

	4.3 Alternative formulations
	4.3.1 Rigid specification logics
	4.3.2 Type systems

	5 Conclusion
	Index

